IEEE Trans Pattern Anal Mach Intell
August 2019
We introduce a new problem of gaze anticipation on future frames which extends the conventional gaze prediction problem to go beyond current frames. To solve this problem, we propose a new generative adversarial network based model, Deep Future Gaze (DFG), encompassing two pathways: DFG-P is to anticipate gaze prior maps conditioned on the input frame which provides task influences; DFG-G is to learn to model both semantic and motion information in future frame generation. DFG-P and DFG-G are then fused to anticipate future gazes.
View Article and Find Full Text PDFSearching for a target object in a cluttered scene constitutes a fundamental challenge in daily vision. Visual search must be selective enough to discriminate the target from distractors, invariant to changes in the appearance of the target, efficient to avoid exhaustive exploration of the image, and must generalize to locate novel target objects with zero-shot training. Previous work on visual search has focused on searching for perfect matches of a target after extensive category-specific training.
View Article and Find Full Text PDF