Recent advances in Quantum Machine Learning (QML) have provided benefits to several computational processes, drastically reducing the time complexity. Another approach of combining quantum information theory with machine learning-without involving quantum computers-is known as Quantum-inspired Machine Learning (QiML), which exploits the expressive power of the quantum language to increase the accuracy of the process (rather than reducing the time complexity). In this work, we propose a large-scale experiment based on the application of a binary classifier inspired by quantum information theory to the biomedical imaging context in clonogenic assay evaluation to identify the most discriminative feature, allowing us to enhance cell colony segmentation.
View Article and Find Full Text PDF