Publications by authors named "Kenealy S"

Murine inflammatory caspase-11 has an important role in intestinal epithelial inflammation and barrier function. Activation of the non-canonical inflammasome, mediated by caspase-11, serves as a regulatory pathway for the production of the pro-inflammatory cytokines IL-1β and IL-18, and has a key role in pyroptotic cell death. We have previously demonstrated a protective role for caspase-11 during dextran sulphate sodium (DSS)-induced colitis, however the importance of caspase-11 during colorectal tumour development remains unclear.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a debilitating neuroimmunological and neurodegenerative disease affecting >4,00,000 individuals in the United States. Population and family-based studies have suggested that there is a strong genetic component. Numerous genomic linkage screens have identified regions of interest for MS loci.

View Article and Find Full Text PDF

Background: Although genes play a key role in many complex diseases, the specific genes involved in most complex diseases remain largely unidentified. Their discovery will hinge on the identification of key sequence variants that are conclusively associated with disease. While much attention has been focused on variants in protein-coding DNA, variants in noncoding regions may also play many important roles in complex disease by altering gene regulation.

View Article and Find Full Text PDF

Purpose: Age-related macular degeneration (AMD) is a retinal degenerative disease that is the leading cause of blindness worldwide for individuals over the age of 60. Although the etiology of AMD remains largely unknown, numerous studies have suggested that both genes and environmental risk factors significantly influence the risk of developing AMD. Identification of the underlying genes has been difficult, with both genomic screen (locational) and candidate gene (functional) approaches being used.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a debilitating neuroimmunological and neurodegenerative disease with a strong genetic component. Numerous studies have failed to consistently identify genes that confer disease susceptibility except for association with HLA-DR. Seven non-HLA regions (1q, 2q, 9q, 13q, 16q, 18p and 19q) identified in a recent genomic screen were investigated by genotyping approximately 20 single-nucleotide polymorphisms (SNPs) at approximately 1 Mb intervals.

View Article and Find Full Text PDF

Alzheimer disease (AD) is a progressive neurodegenerative disorder of later life with a complex etiology and a strong genetic component. Several genomic screens have suggested that a region between chromosome 12p13 and 12q22 contains at least one additional locus underlying the susceptibility of AD. However, localization of this locus has been difficult.

View Article and Find Full Text PDF

To provide a definitive linkage map for multiple sclerosis, we have genotyped the Illumina BeadArray linkage mapping panel (version 4) in a data set of 730 multiplex families of Northern European descent. After the application of stringent quality thresholds, data from 4,506 markers in 2,692 individuals were included in the analysis. Multipoint nonparametric linkage analysis revealed highly significant linkage in the major histocompatibility complex (MHC) on chromosome 6p21 (maximum LOD score [MLS] 11.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a debilitating neuroimmunological and neurodegenerative disorder. Despite substantial evidence for polygenic inheritance of the disease, the major histocompatibility complex is the only region that clearly and consistently demonstrates linkage and association in MS studies. The goal of this study was to identify additional chromosomal regions that harbor susceptibility genes for MS.

View Article and Find Full Text PDF

To explore the potential value of recently developed high-density linkage mapping methods in the analysis of complex disease we have regenotyped five nuclear families first studied in the 1996 UK multiple sclerosis linkage genome screen, using Applied Biosystems high-density microsatellite linkage mapping set, the Illumina BeadArray linkage mapping panel (version 3) and the Affymetrix GeneChip Human Mapping 10K array. We found that genotyping success, information extraction and genotyping accuracy were improved with all systems. These improvements were particularly marked with the SNP-based methods (Illumina and Affymetrix), with little difference between these.

View Article and Find Full Text PDF

Purpose: Age-related macular degeneration (AMD) is a retinal degenerative disease that is the leading cause of blindness worldwide in individuals over the age of 60. Although the etiology of AMD remains largely unknown, numerous studies have suggested both genetic and environmental influences. A previous study of affected multiplex families identified four chromosomal regions that potentially harbor AMD susceptibility genes.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a debilitating immunological and neurodegenerative disorder. Epidemiological studies have provided overwhelming evidence of complex genetic susceptibility to MS. However, with the exception of the human leukocyte antigen (HLA) locus, genetic studies have failed to consistently identify significant linkage or association with genes that modulate MS disease expression.

View Article and Find Full Text PDF