Publications by authors named "Kene N Piasta"

Recent research has deepened our understanding of the ancient, conserved chemosensory array that detects small molecule attractants and repellents, and directs the chemotaxis of bacterial and archaeal cells towards an optimal chemical environment. Here we review advances towards a molecular description of the ultrastable lattice architecture and ultrasensitive signal transduction mechanism of the chemosensory array, as well as controversies and challenges requiring further research. Ultimately, a full molecular understanding of array structure and on-off switching will foster (i) the design of novel therapies that block pathogenic wound seeking and infection, (ii) the development of highly specific, sensitive, stable biosensors, and (iii) the elucidation of general functional principles shared by receptor patches in all branches of life.

View Article and Find Full Text PDF

The chemosensory signaling array of bacterial chemotaxis is composed of functional core units containing two receptor trimers of dimers, a homodimeric CheA kinase, and two CheW adaptor proteins. In vitro reconstitutions generate individual, functional core units and larger functional assemblies, including dimers, hexagons, and hexagonal arrays. Such reconstituted complexes have been shown to have both quasi-stable and ultrastable populations that decay with lifetimes of 1-2 days and ∼3 weeks at 22 °C, respectively, where decay results primarily from proteolysis of the bound kinase [Erbse, A.

View Article and Find Full Text PDF

Bacterial chemoreceptors cluster in highly ordered, cooperative, extended arrays with a conserved architecture, but the principles that govern array assembly remain unclear. Here we show images of cellular arrays as well as selected chemoreceptor complexes reconstituted in vitro that reveal new principles of array structure and assembly. First, in every case, receptors clustered in a trimers-of-dimers configuration, suggesting this is a highly favored fundamental building block.

View Article and Find Full Text PDF

The ultrasensitive, ultrastable bacterial chemosensory array of Escherichia coli and Salmonella typhimurium is representative of the large, conserved family of sensory arrays that control the cellular chemotaxis of motile bacteria and Archaea. The core framework of the membrane-bound array is a lattice assembled from three components: a transmembrane receptor, a cytoplasmic His kinase (CheA), and a cytoplasmic adaptor protein (CheW). Structural studies in the field have revealed the global architecture of the array and complexes between specific components, but much remains to be learned about the essential protein-protein interfaces that define array structure and transmit signals between components.

View Article and Find Full Text PDF

The three core components of the ubiquitous bacterial chemosensory array - the transmembrane chemoreceptor, the histidine kinase CheA, and the adaptor protein CheW - assemble to form a membrane-bound, hexagonal lattice in which receptor transmembrane signals regulate kinase activity. Both the regulatory domain of the kinase and the adaptor protein bind to overlapping sites on the cytoplasmic tip of the receptor (termed the protein interaction region). Notably, the kinase regulatory domain and the adaptor protein share the same fold constructed of two SH3-like domains.

View Article and Find Full Text PDF

Ba(2+), a doubly charged analogue of K(+), specifically blocks K(+) channels by virtue of electrostatic stabilization in the permeation pathway. Ba(2+) block is used here as a tool to determine the equilibrium binding affinity for various monovalent cations at specific sites in the selectivity filter of a noninactivating mutant of KcsA. At high concentrations of external K(+), the block-time distribution is double exponential, marking at least two Ba(2+) sites in the selectivity filter, in accord with a Ba(2+)-containing crystal structure of KcsA.

View Article and Find Full Text PDF