Publications by authors named "Kendra Shrestha"

Beta-adrenergic receptors (βARs) are G protein-coupled receptors (GPCRs) that mediate catecholamine hormone-induced stress responses, such as elevation of heart rate. Besides those that are plasma membrane-bound, endomembrane βARs are also signaling competent. Dysregulation of βAR pathways underlies severe pathological conditions.

View Article and Find Full Text PDF

Beta-adrenergic receptors (βARs) are G protein-coupled receptors (GPCRs) that mediate catecholamine-induced stress responses, such as heart rate increase and bronchodilation. In addition to signals from the cell surface, βARs also broadcast non-canonical signaling activities from the cell interior membranes (endomembranes). Dysregulation of these receptor pathways underlies severe pathological conditions.

View Article and Find Full Text PDF

Herein we describe a method for combining supramolecular catalysis with imininum-based organocatalysis in the Diels-Alder cycloaddition reaction. Both supramolecular host and L-proline are required for the reaction to occur, implying that encapsulation of the substrates and co-catalyst are necessary for the reaction to occur. We explore the substrate scope for a variety of -cinnamaldehydes and dienes.

View Article and Find Full Text PDF

Nasal irrigation is a widely recognized treatment for several sinonasal diseases. However, there is a lack of clear evidence-based guidelines for optimal irrigation delivery to improve lavage and topical drug delivery. This study uses computational fluid dynamics (CFD) to assess the effects of different head tilt positions on sinonasal coverage, residence time and shear stresses in squeeze-bottle nasal irrigation.

View Article and Find Full Text PDF

Site-specific hydrogen/deuterium exchange is an important method to access deuterated compounds for chemical and biological studies. Herein is reported the first method for the regioselective α-deuteration of enals and enones. The transformation features DO and AcOD as deuterium sources and amines as organocatalysts.

View Article and Find Full Text PDF

The primary objective of this research was to extract the essential information needed for setting atomization break up models, specifically, the Linear Instability Sheet Atomization (LISA) breakup model, and alternative hollow cone models. A secondary objective was to gain visualization and insight into the atomization break up mechanism caused by the effects of viscosity and surface tension on primary break-up, sheet disintegration, ligament and droplet formation. High speed imaging was used to capture the near-nozzle characteristics for water and drug formulations.

View Article and Find Full Text PDF

Optimizing intranasal distribution and retention of topical therapy is essential in the management of patients with chronic rhinosinusitis, including those that have had functional endoscopic sinus surgery (FESS). Computational fluid dynamics analysis has not previously been used to investigate sinus nasal spray delivery in the complete post-operative sinonasal geometries of patients who have undergone FESS. Models of sinonasal cavities were created from postoperative magnetic resonance imaging scans in four patients, three of whom underwent a comprehensive FESS, the other a modified endoscopic Lothrop procedure.

View Article and Find Full Text PDF