Publications by authors named "Kendra L Magyar"

Background: The safety and effectiveness of a continuous, day-and-night automated glycaemic control system using insulin and glucagon has not been shown in a free-living, home-use setting. We aimed to assess whether bihormonal bionic pancreas initialised only with body mass can safely reduce mean glycaemia and hypoglycaemia in adults with type 1 diabetes who were living at home and participating in their normal daily routines without restrictions on diet or physical activity.

Methods: We did a random-order crossover study in volunteers at least 18 years old who had type 1 diabetes and lived within a 30 min drive of four sites in the USA.

View Article and Find Full Text PDF

Background: The safety and efficacy of continuous, multiday, automated glycaemic management has not been tested in outpatient studies of preadolescent children with type 1 diabetes. We aimed to compare the safety and efficacy of a bihormonal bionic pancreas versus conventional insulin pump therapy in this population of patients in an outpatient setting.

Methods: In this randomised, open-label, crossover study, we enrolled preadolescent children (aged 6-11 years) with type 1 diabetes (diagnosed for ≥1 year) who were on insulin pump therapy, from two diabetes camps in the USA.

View Article and Find Full Text PDF

Background: The safety and effectiveness of automated glycemic management have not been tested in multiday studies under unrestricted outpatient conditions.

Methods: In two random-order, crossover studies with similar but distinct designs, we compared glycemic control with a wearable, bihormonal, automated, "bionic" pancreas (bionic-pancreas period) with glycemic control with an insulin pump (control period) for 5 days in 20 adults and 32 adolescents with type 1 diabetes mellitus. The automatically adaptive algorithm of the bionic pancreas received data from a continuous glucose monitor to control subcutaneous delivery of insulin and glucagon.

View Article and Find Full Text PDF

Context: A challenge for automated glycemic control in type 1 diabetes (T1D) is the large variation in insulin needs between individuals and within individuals at different times in their lives.

Objectives: The objectives of the study was to test the ability of a third-generation bihormonal bionic pancreas algorithm, initialized with only subject weight; to adapt automatically to the different insulin needs of adults and adolescents; and to evaluate the impact of optional, automatically adaptive meal-priming boluses.

Design: This was a randomized controlled trial.

View Article and Find Full Text PDF

Objective: To test whether safe and effective glycemic control could be achieved in type 1 diabetes using a bihormonal bionic endocrine pancreas driven by a continuous glucose monitor in experiments lasting more than two days and including six high-carbohydrate meals and exercise as challenges to glycemic control.

Research Design And Methods: Six subjects with type 1 diabetes and no endogenous insulin secretion participated in two 51-h experiments. Blood glucose was managed with a bionic endocrine pancreas controlling subcutaneous delivery of insulin and glucagon with insulin pumps.

View Article and Find Full Text PDF