Publications by authors named "Kendra K Nordgren"

Background: Epigenetic control of gene expression is mediated by cytosine methylation/demethylation and histone modifications including methylation, acetylation and glycosylation. The epigenetic programme is corrupted in cancer cells to maintain a pattern of gene expression that leads to their de-differentiated, rapidly proliferating phenotype. Enzymes responsible for modifying histones and cytosine are sensitive to the cellular metabolite pool and can be activated by an increase in their substrates or inhibited by an increase in their products or competitors for substrate binding.

View Article and Find Full Text PDF

Doxorubicin (DOX) is a widely prescribed treatment for a broad scope of cancers, but clinical utility is limited by the cumulative, dose-dependent cardiomyopathy that occurs with repeated administration. DOX-induced cardiotoxicity is associated with the production of reactive oxygen species (ROS) and oxidation of lipids, DNA and proteins. A major cellular defense mechanism against such oxidative stress is activation of the Keap1/Nrf2-antioxidant response element (ARE) signaling pathway, which transcriptionally regulates expression of antioxidant genes such as Nqo1 and Gstp1.

View Article and Find Full Text PDF

The "methionine cycle" plays a critical role in the regulation of concentrations of (S)-adenosylmethionine (AdoMet), the major biological methyl donor. We set out to study sequence variation in genes encoding the enzyme that synthesizes AdoMet in liver, methionine adenosyltransferase 1A (MAT1A) and the major hepatic AdoMet using enzyme, glycine N-methyltransferase (GNMT), as well as functional implications of that variation. We resequenced MAT1A and GNMT using DNA from 288 subjects of three ethnicities, followed by functional genomic and genotype-phenotype correlation studies performed with 268 hepatic biopsy samples.

View Article and Find Full Text PDF

Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine, the major biological methyl donor. MAT1A and MAT2A encode two distinct MAT isoforms in mammals. MAT2A is expressed in nonhepatic tissues, whereas MAT1A is expressed in the liver.

View Article and Find Full Text PDF

Acetaminophen is the leading cause of acute hepatic failure in many developed nations. Acetaminophen hepatotoxicity is mediated by the reactive metabolite N-acetyl-p-benzoquinonimine (NAPQI). We performed a "discovery" genome-wide association study using a cell line-based model system to study the possible contribution of genomics to NAPQI-induced cytotoxicity.

View Article and Find Full Text PDF