Dynamic nuclear polarization (DNP) solid-state NMR enables detection of proteins at endogenous concentrations in cells through sensitivity enhancement from nitroxide biradical polarization agents. AsymPolPOK, a novel water-soluble asymmetric nitroxide biradical, offers superior sensitivity and faster build-up times compared to existing agents like AMUPol. Here, we characterize AsymPolPOK in mammalian HEK293 cells, examining its cellular distribution, reduction kinetics, and DNP performance.
View Article and Find Full Text PDFRegions of intrinsic disorder play crucial roles in biological systems, yet they often elude characterization by conventional biophysical techniques. To capture conformational distributions across different timescales, we employed a freezing approach coupled with solid-state NMR analysis. Using segmentally isotopically labeled α-synuclein (α-syn), we investigated the conformational preferences of the six alanines, three glycines, and a single site (L8) in the disordered amino terminus under three distinct conditions: in 8 M urea, as a frozen monomer in buffer, and within the disordered regions flanking the amyloid core.
View Article and Find Full Text PDFAmyloid forms of α-synuclein adopt different conformations depending on environmental conditions. Advances in structural biology have accelerated fibril characterization. However, it remains unclear which conformations predominate in biological settings because current methods typically not only require isolating fibrils from their native environments, but they also do not provide insight about flexible regions.
View Article and Find Full Text PDFWith the sensitivity enhancements conferred by dynamic nuclear polarization (DNP), magic angle spinning (MAS) solid state NMR spectroscopy experiments can attain the necessary sensitivity to detect very low concentrations of proteins. This potentially enables structural investigations of proteins at their endogenous levels in their biological contexts where their native stoichiometries with potential interactors is maintained. Yet, even with DNP, experiments are still sensitivity limited.
View Article and Find Full Text PDFThe protein α-syn adopts a wide variety of conformations including an intrinsically disordered monomeric form and an α-helical rich membrane-associated form that is thought to play an important role in cellular membrane processes. However, despite the high affinity of α-syn for membranes, evidence that the α-helical form of α-syn is adopted inside cells has thus far been indirect. In cell DNP-assisted solid state NMR on frozen samples has the potential to report directly on the entire conformational ensemble.
View Article and Find Full Text PDFProtein regions which are intrinsically disordered, exist as an ensemble of rapidly interconverting structures. Cooling proteins to cryogenic temperatures for dynamic nuclear polarization (DNP) magic angle spinning (MAS) NMR studies suspends most of the motions, resulting in peaks that are broad but not featureless. To demonstrate that detailed conformational restraints can be retrieved from the peak shapes of frozen proteins alone, we developed and used a simulation framework to assign peak features to conformers in the ensemble.
View Article and Find Full Text PDFDynamic Nuclear Polarization (DNP) enhanced solid state NMR increases experimental sensitivity, potentially enabling detection of biomolecules at their physiological concentrations. The sensitivity of DNP experiments is due to the transfer of polarization from electron spins of free radicals to the nuclear spins of interest. Here, we investigate the reduction of AMUPol in both lysed and intact HEK293 cells.
View Article and Find Full Text PDFNMR has the resolution and specificity to determine atomic-level protein structures of isotopically-labeled proteins in complex environments and, with the sensitivity gains conferred by dynamic nuclear polarization (DNP), NMR has the sensitivity to detect proteins at their endogenous concentrations. Prior work established that DNP MAS NMR is compatible with cellular viability. However, in that work, 15% glycerol, rather than the more commonly used 10% DMSO, was used as the cellular cryoprotectant.
View Article and Find Full Text PDFNMR has the resolution and specificity to determine atomic-level protein structures of isotopically labeled proteins in complex environments, and with the sensitivity gains conferred by dynamic nuclear polarization (DNP), NMR has the sensitivity to detect proteins at their endogenous concentrations. However, DNP sensitivity enhancements are critically dependent on experimental conditions and sample composition. While some of these conditions are theoretically compatible with cellular viability, the effects of others on cellular sample integrity are unknown.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2020
Yeast prions provide self-templating protein-based mechanisms of inheritance whose conformational changes lead to the acquisition of diverse new phenotypes. The best studied of these is the prion domain (NM) of Sup35, which forms an amyloid that can adopt several distinct conformations (strains) that confer distinct phenotypes when introduced into cells that do not carry the prion. Classic dyes, such as thioflavin T and Congo red, exhibit large increases in fluorescence when bound to amyloids, but these dyes are not sensitive to local structural differences that distinguish amyloid strains.
View Article and Find Full Text PDFDynamic nuclear polarization (DNP) can dramatically increase the sensitivity of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. These sensitivity gains increase as temperatures decrease and are large enough to enable the study of molecules at very low concentrations at the operating temperatures (~100 K) of most commercial DNP-equipped NMR spectrometers. This leads to the possibility of in-cell structural biology on cryopreserved cells for macromolecules at their endogenous levels in their native environments.
View Article and Find Full Text PDFStructural investigations of biomolecules are typically confined to in vitro systems under extremely limited conditions. These investigations yield invaluable insights, but such experiments cannot capture important structural features imposed by cellular environments. Structural studies of proteins in their native contexts are not only possible using state-of-the-art sensitivity-enhanced (dynamic nuclear polarization, DNP) solid-state nuclear magnetic resonance (NMR) techniques, but these studies also demonstrate that the cellular context can and does have a dramatic influence on protein structure.
View Article and Find Full Text PDFYeast prions are self-templating protein-based mechanisms of inheritance whose conformational changes lead to the acquisition of diverse new phenotypes. The best studied of these is the prion domain (NM) of Sup35, which forms an amyloid that can adopt several distinct conformations (strains) that confer distinct phenotypes when introduced into cells that do not carry the prion. Here, we investigate the structure of NM fibrils templated into the prion conformation with cellular lysates.
View Article and Find Full Text PDFA mechanistic understanding of Aβ aggregation and high-resolution structures of Aβ fibrils and oligomers are vital to elucidating relevant details of neurodegeneration in Alzheimer's disease, which will facilitate the rational design of diagnostic and therapeutic protocols. The most detailed and reproducible insights into structure and kinetics have been achieved using Aβ peptides produced by recombinant expression, which results in an additional methionine at the N-terminus. While the length of the C-terminus is well established to have a profound impact on the peptide's aggregation propensity, structure, and neurotoxicity, the impact of the N-terminal methionine on the aggregation pathways and structure is unclear.
View Article and Find Full Text PDFThe yeast prion protein Sup35NM is a self-propagating amyloid. Despite intense study, there is no consensus on the organization of monomers within Sup35NM fibrils. Some studies point to a β-helical arrangement, whereas others suggest a parallel in-register organization.
View Article and Find Full Text PDFBiological processes occur in complex environments containing a myriad of potential interactors. Unfortunately, limitations on the sensitivity of biophysical techniques normally restrict structural investigations to purified systems, at concentrations that are orders of magnitude above endogenous levels. Dynamic nuclear polarization (DNP) can dramatically enhance the sensitivity of nuclear magnetic resonance (NMR) spectroscopy and enable structural studies in biologically complex environments.
View Article and Find Full Text PDFStructural conversion of one given protein sequence into different amyloid states, resulting in distinct phenotypes, is one of the most intriguing phenomena of protein biology. Despite great efforts the structural origin of prion diversity remains elusive, mainly because amyloids are insoluble yet noncrystalline and therefore not easily amenable to traditional structural-biology methods. We investigate two different phenotypic prion strains, weak and strong, of yeast translation termination factor Sup35 with respect to angular orientation of tyrosines using polarized light spectroscopy.
View Article and Find Full Text PDFYeast prions are self-templating protein-based mechanisms of inheritance whose conformational changes lead to the acquisition of diverse new phenotypes. The best studied of these is the prion domain (NM) of Sup35, which forms an amyloid that can adopt several distinct conformations (strains) that produce distinct phenotypes. Using magic-angle spinning nuclear magnetic resonance spectroscopy, we provide a detailed look at the dynamic properties of these forms over a broad range of timescales.
View Article and Find Full Text PDFThe physical basis for high-affinity interactions involving proteins is complex and potentially involves a range of energetic contributions. Among these are changes in protein conformational entropy, which cannot yet be reliably computed from molecular structures. We have recently used changes in conformational dynamics as a proxy for changes in conformational entropy of calmodulin upon association with domains from regulated proteins.
View Article and Find Full Text PDFNMR spin relaxation retains a central role in the characterization of the fast internal motion of proteins and their complexes. Knowledge of the distribution and amplitude of the motion of amino acid side chains is critical for the interpretation of the dynamical proxy for the residual conformational entropy of proteins, which can potentially significantly contribute to the entropy of protein function. A popular treatment of NMR relaxation phenomena in macromolecules dissolved in liquids is the so-called model-free approach of Lipari and Szabo.
View Article and Find Full Text PDFMolecular recognition by proteins is fundamental to almost every biological process, particularly the protein associations underlying cellular signal transduction. Understanding the basis for protein-protein interactions requires the full characterization of the thermodynamics of their association. Historically it has been virtually impossible to experimentally estimate changes in protein conformational entropy, a potentially important component of the free energy of protein association.
View Article and Find Full Text PDFCalmodulin is a central mediator of calcium-dependent signal transduction pathways and regulates the activity of a large number of diverse targets. Calcium-dependent interactions of calmodulin with regulated proteins are of generally high affinity but of quite variable thermodynamic origins. Here we investigate the influence of the binding of the calmodulin-binding domain of calmodulin kinase I on the fast internal dynamics of calcium-saturated calmodulin.
View Article and Find Full Text PDF[structure: see text] Many peptides bind to calmodulin (CaM) in a helical conformation. Here we describe a group of synthetic inhibitors of CaM based on an arylamide scaffold that is intended to mimic smMLCK, a CaM-binding helical peptide. Compound 1 showed a K(i) value of 7.
View Article and Find Full Text PDFp-Hydroxybenzoate hydroxylase (PHBH) is an FAD-dependent monooxygenase that catalyzes the hydroxylation of p-hydroxybenzoate (pOHB) to 3,4-dihydroxybenzoate in an NADPH-dependent reaction. Two structural features are coupled to control the reactivity of PHBH with NADPH: a proton-transfer network that allows protons to be passed between the sequestered active site and solvent and a flavin that adopts two positions: "in", where the flavin is near pOHB, and "out", where the flavin is near NADPH. PHBH uses the proton-transfer network to test for the presence of a suitable aromatic substrate before allowing the flavin to adopt the NADPH-accessible conformation.
View Article and Find Full Text PDF