Publications by authors named "Kendra A Hyland"

The non-viral, integrating Sleeping Beauty (SB) transposon system is efficient in treating systemic monogenic disease in mice, including hemophilia A and B caused by deficiency of blood clotting factors and mucopolysaccharidosis types I and VII caused by α-L-iduronidase (IDUA) and β-glucuronidase (GUSB) deficiency, respectively. Modified approaches of the hydrodynamics-based procedure to deliver transposons to the liver in dogs were recently reported. Using the transgenic canine reporter secreted alkaline phosphatase (cSEAP), transgenic protein in the plasma was demonstrated for up to 6 weeks post infusion.

View Article and Find Full Text PDF

The Sleeping Beauty transposon system has been extensively tested for integration of reporter and therapeutic genes in vitro and in vivo in mice. Dogs were used as a large animal model for human therapy and minimally invasive infusion of DNA solutions. DNA solutions were delivered into the entire liver or the left side of the liver using balloon catheters for temporary occlusion of venous outflow.

View Article and Find Full Text PDF

The Sleeping Beauty (SB) transposon system can insert sequences into mammalian chromosomes, supporting long-term expression of both reporter and therapeutic genes. Hematopoietic progenitor cells (HPCs) are an ideal therapeutic gene transfer target as they are used in therapy for a variety of hematologic and metabolic conditions. As successful SB-mediated gene transfer into human CD34(+) HPCs has been reported by several laboratories, we sought to extend these studies to the introduction of a therapeutic gene conferring resistance to methotrexate (MTX), potentially providing a chemoprotective effect after engraftment.

View Article and Find Full Text PDF

The advent of Transcription Activator-Like Effector Nucleases (TALENs), and similar technologies such as CRISPR, provide a straightforward and cost effective option for targeted gene knockout (KO). Yet, there is still a need for methods that allow for enrichment and isolation of modified cells for genetic studies and therapeutics based on gene modified human cells. We have developed and validated two methods for simple enrichment and isolation of single or multiplex gene KO's in transformed, immortalized, and human progenitor cells.

View Article and Find Full Text PDF

Background: The Sleeping Beauty (SB) transposon system can insert defined sequences into chromosomes to direct the extended expression of therapeutic genes. Our goal is to develop the SB system for nonviral complementation of Fanconi anemia (FA), a rare autosomal recessive disorder accompanied by progressive bone marrow failure.

Methods: We used a CytoPulse electroporation system (CytoPulse, Glen Burnie, MD, USA) to introduce SB transposons into human lymphoblastoid cells (LCL) derived from both Fanconi anemia type C (FA-C) defective and normal patients.

View Article and Find Full Text PDF

Recurrent group A Streptococcus (GAS) tonsillitis and associated autoimmune diseases indicate that the immune response to this organism can be ineffective and pathological. TGF-beta1 is recognized as an essential signal for generation of regulatory T cells (Tregs) and T helper (Th) 17 cells. Here, the impact of TGF-beta1 induction on the T-cell response in mouse nasal-associated lymphoid tissue (NALT) following intranasal (i.

View Article and Find Full Text PDF

Streptococcus pyogenes is a major causative agent of tonsillitis or pharyngitis in children. Streptococcus pyogenes can persist in tonsils, and one-third of children treated with antibiotics continue to shed streptococci and have recurrent infections. Mouse nasal-associated lymphoid tissue (NALT) is functionally analogous to human oropharyngeal lymphoid tissues, and serves as a model for characterization of the mucosal innate immune response to S.

View Article and Find Full Text PDF

Streptococcus pyogenes is a major cause of pharyngitis in humans and encodes several fibronectin-binding proteins. M protein and protein F1 (PrtF1/SfbI) are differentially regulated by CO(2) and O(2), respectively, and both mediate the invasion of epithelial cells. This study examined whether PrtF1/SfbI shares other properties with M protein.

View Article and Find Full Text PDF

The enteric immune system of swine protects against infectious and noninfectious environmental insults and discriminates ingested nutrients, food, and commensal microflora from pathogenic agents. The molecular and cellular elements of the immune system have been selected over evolutionary time in response to the specific environment of pigs. Thus, models of immune function based on mouse and human need to be applied cautiously in the pig.

View Article and Find Full Text PDF

The innate immune response is critical to enteric disease resistance and the induction of mucosal adaptive immunity. In mucosae of the small intestine, Peyer's patches play a central role in immune surveillance and sampling of bacteria by specialized M cells. The innate immune response to Salmonella enterica serovar Choleraesuis, an enteric pathogen of swine, involves IL-1beta and IL-8 mRNA induction but not that of IL-6 and TNFalpha, in contrast to Salmonella serovar Typhimurium infection of murine small intestine.

View Article and Find Full Text PDF

Peyer's patches are organized lymphoid tissues of the small intestine that play a critical role in disease resistance and oral tolerance. Peyer's patches in the jejunum contain lymphocytes, dendritic cells, macrophages, villous epithelium, and specialized follicle-associated epithelium. Little is known about the mechanisms and processes by which cells of the Peyer's patches discriminate food nutrients and commensal microflora from pathogenic microbiota.

View Article and Find Full Text PDF

Salmonella enterica serovar Choleraesuis is an enteric pathogen of swine, producing septicemia, enterocolitis, pneumonia, and hepatitis. The initial molecular events at the site of Salmonella infection are hypothesized to be critical in the initiation of innate and adaptive immune responses; however, the acute immune response elicited by porcine intestinal tissues is not well understood. To address this need, we employed explants of jejunal Peyer's patch (JPP) mucosa from pigs to examine Salmonella-induced immune responses under controlled conditions as well as to overcome limitations of whole animal approaches.

View Article and Find Full Text PDF

Background: We have previously shown that pig-to-primate intraportal islet xenografts reverse diabetes, escape hyperacute rejection, and undergo acute cellular rejection in non-immunosuppressed recipients. To gain a better understanding of mechanisms contributing to xenoislet rejection in non-human primates we examined gene expression in livers bearing islet xenografts in the first 72 h after transplantation.

Methods: Liver specimens were collected at sacrifice from seven non-immunosuppressed rhesus macaques at 12, 24, 48 and 72 h after intraportal porcine islet transplantation.

View Article and Find Full Text PDF