Publications by authors named "Kendle Maslowski"

Bacterial cancer therapy (BCT) is a promising therapeutic for solid tumours. Salmonella enterica Typhimurium (STm) is well-studied amongst bacterial vectors due to advantages in genetic modification and metabolic adaptation. A longstanding paradox is the redundancy of T cells for treatment efficacy; instead, STm BCT depends on innate phagocytes for tumour control.

View Article and Find Full Text PDF

Disruption of cellular activities by pathogen virulence factors can trigger innate immune responses. Interferon-γ (IFN-γ)-inducible antimicrobial factors, such as the guanylate binding proteins (GBPs), promote cell-intrinsic defense by attacking intracellular pathogens and by inducing programmed cell death. Working in human macrophages, we discovered that GBP1 expression in the absence of IFN-γ killed the cells and induced Golgi fragmentation.

View Article and Find Full Text PDF

In lymphocytes, gene expression is specifically regulated by antigen receptor signalling, making them ideal targets for use as distal T cell receptor (TCR) reporters. -Timer of cell kinetics and activity (Tocky) mice are a ground-breaking tool to report TCR-driven expression using Fluorescent Timer protein (FT). FT undergoes a time-dependent shift in its emission spectrum following translation, allowing for the temporal reporting of transcriptional events.

View Article and Find Full Text PDF

In CD4 T helper cells, the active form of vitamin D , 1,25-dihydroxyvitamin D (1,25D) suppresses production of inflammatory cytokines, including interferon-gamma (IFN-γ), but the mechanisms for this are not yet fully defined. In innate immune cells, response to 1,25D has been linked to metabolic reprogramming. It is unclear whether 1,25D has similar effects on CD4 T cells, although it is known that antigen stimulation of these cells promotes an anabolic metabolic phenotype, characterized by high rates of aerobic glycolysis to support clonal expansion and effector cytokine expression.

View Article and Find Full Text PDF

Inflammasomes are cytosolic innate immune sensors of pathogen infection and cellular damage that induce caspase-1-mediated inflammation upon activation. Although inflammation is protective, uncontrolled excessive inflammation can cause inflammatory diseases and can be detrimental, such as in coronavirus disease (COVID-19). However, the underlying mechanisms that control inflammasome activation are incompletely understood.

View Article and Find Full Text PDF

The gut relies on the complex interaction between epithelial, stromal and immune cells to maintain gut health in the face of food particles and pathogens. Innate sensing by the intestinal epithelium is critical for maintaining epithelial barrier function and also orchestrating mucosal immune responses. Numerous innate pattern recognition receptors (PRRs) are involved in such sensing.

View Article and Find Full Text PDF
Article Synopsis
  • - Bacterial cancer therapy (BCT) using a modified strain of Salmonella (STmΔaroA) shows effectiveness in treating solid tumors, particularly in mouse models of intestinal cancer, by significantly reducing tumor burden and load.
  • - The study found that STmΔaroA affects tumor biology by altering the expression of genes related to tumor stemness, epithelial-mesenchymal transition, and the cell cycle, indicating it targets the tumor epithelium actively.
  • - Metabolomic analysis revealed that STmΔaroA changes the metabolic environment of tumors, suggesting it competes with the tumor for resources and requires the presence of live bacteria to exert its effects.
View Article and Find Full Text PDF

How T cell receptor (TCR) signal strength modulates T cell function and to what extent this is modified by immune checkpoint blockade (ICB) are key questions in immunology. Using Nr4a3-Tocky mice, we characterized early quantitative and qualitative changes that occur in CD4 T cells in relation to TCR signaling strength. We captured how dose- and time-dependent programming of distinct co-inhibitory receptors rapidly recalibrates T cell activation thresholds and visualized the immediate effects of ICB on T cell re-activation.

View Article and Find Full Text PDF

Ribosomal proteins (RP) regulate specific gene expression by selectively translating subsets of mRNAs. Indeed, in Diamond-Blackfan anemia and 5q- syndrome, mutations in RP genes lead to a specific defect in erythroid gene translation and cause anemia. Little is known about the molecular mechanisms of selective mRNA translation and involvement of ribosomal-associated factors in this process.

View Article and Find Full Text PDF

While the functional importance of inflammasomes in blood-derived cell types is well established, it remains poorly understood how inflammasomes in nonhematopoietic cells contribute to mucosal immunity. Recent studies have revealed functional roles of inflammasomes - particularly NAIP/NLRC4, NLRP6, and noncanonical caspase-4 (caspase-11) - within epithelial cells of the gut in mucosal immune defense, inflammation, and tumorigenesis. Here, we review and discuss these findings in the broader context of tissue compartment-specific mucosal immunity.

View Article and Find Full Text PDF

Objective: Host-microbial interactions are central in health and disease. Monosodium urate monohydrate (MSU) crystals cause gout by activating the NLRP3 inflammasome, leading to interleukin-1β (IL-1β) production and neutrophil recruitment. This study was undertaken to investigate the relevance of gut microbiota, acetate, and the metabolite-sensing receptor GPR43 in regulating inflammation in a murine model of gout.

View Article and Find Full Text PDF

NLR family apoptosis inhibitory proteins (NAIPs) belong to both the Nod-like receptor (NLR) and the inhibitor of apoptosis (IAP) families. NAIPs are known to form an inflammasome with NLRC4, but other in vivo functions remain unexplored. Using mice deficient for all NAIP paralogs (Naip1-6(Δ/Δ)), we show that NAIPs are key regulators of colorectal tumorigenesis.

View Article and Find Full Text PDF

The gut mucosal epithelium separates the host from the microbiota, but enteropathogens such as Salmonella Typhimurium (S.Tm) can invade and breach this barrier. Defenses against such acute insults remain incompletely understood.

View Article and Find Full Text PDF

Aryl hydrocarbon receptor nuclear translocator (ARNT) is a transcription factor that binds to partners to mediate responses to environmental signals. To investigate its role in the innate immune system, floxed ARNT mice were bred with lysozyme M-Cre recombinase animals to generate lysozyme M-ARNT (LAR) mice with reduced ARNT expression. Myeloid cells of LAR mice had altered mRNA expression and delayed wound healing.

View Article and Find Full Text PDF

Approximately 2 billion people currently suffer from intestinal helminth infections, which are typically chronic in nature and result in growth retardation, vitamin A deficiency, anemia and poor cognitive function. Such chronicity results from co-evolution between helminths and their mammalian hosts; however, the molecular mechanisms by which these organisms avert immune rejection are not clear. We have found that the natural murine helminth, Heligmosomoides polygyrus bakeri (Hp) elicits the secretion of IL-1β in vivo and in vitro and that this cytokine is critical for shaping a mucosal environment suited to helminth chronicity.

View Article and Find Full Text PDF

Pattern recognition receptors (PRRs) are commonly known as sensor proteins crucial for the early detection of microbial or host-derived stress signals by innate immune cells. Interestingly, some PRRs are also expressed and functional in cells of the adaptive immune system. These receptors provide lymphocytes with innate sensing abilities; for example, B cells express Toll-like receptors, which are important for the humoral response.

View Article and Find Full Text PDF

Certain autoimmune diseases as well as asthma have increased in recent decades, particularly in developed countries. The hygiene hypothesis has been the prevailing model to account for this increase; however, epidemiology studies also support the contribution of diet and obesity to inflammatory diseases. Diet affects the composition of the gut microbiota, and recent studies have identified various molecules and mechanisms that connect diet, the gut microbiota, and immune responses.

View Article and Find Full Text PDF

The gut microbiota has recently been recognized for its role in immune regulation, and changes in gut microbiota may be the basis for an increased incidence of autoimmune diseases and asthma in developed countries. Beneficial microbes produce factors that are distributed systemically, and therefore can influence peripheral inflammatory responses. Such symbiosis factors are important for the control and resolution of inflammation and autoimmune diseases.

View Article and Find Full Text PDF

The fields of immunology, microbiology, nutrition and metabolism are rapidly converging. Here we expand on a diet-microbiota model as the basis for the greater incidence of asthma and autoimmunity in developed countries.

View Article and Find Full Text PDF

The immune system responds to pathogens by a variety of pattern recognition molecules such as the Toll-like receptors (TLRs), which promote recognition of dangerous foreign pathogens. However, recent evidence indicates that normal intestinal microbiota might also positively influence immune responses, and protect against the development of inflammatory diseases. One of these elements may be short-chain fatty acids (SCFAs), which are produced by fermentation of dietary fibre by intestinal microbiota.

View Article and Find Full Text PDF