Publications by authors named "Kendall T Presti"

Deep layer III pyramidal cells in the dorsolateral prefrontal cortex (DLPFC) from subjects with schizophrenia and bipolar disorder previously were shown to exhibit dendritic arbor pathology. This study sought to determine whether MARCKS, its regulatory protein dysbindin-1, and two proteins, identified using microarray data, CDC42BPA and ARHGEF6, were associated with dendritic arbor pathology in the DLPFC from schizophrenia and bipolar disorder subjects. Using western blotting, relative protein expression was assessed in the DLPFC (BA 46) grey matter from subjects with schizophrenia (n = 19), bipolar disorder (n = 17) and unaffected control subjects (n = 19).

View Article and Find Full Text PDF

Both schizophrenia (SZ) and substance abuse (SA) exhibit significant heritability. Moreover, N-methyl-d-aspartate receptors (NMDARs) have been implicated in the pathophysiology of both SZ and SA. We hypothesize that the high prevalence of comorbid SA in SZ is due to dysfunction of NMDARs caused by shared risk genes.

View Article and Find Full Text PDF

Background: The amygdala is a central component of the neural circuitry that underlies fear learning. N-methyl-D-aspartate receptor-dependent plasticity in the amygdala is required for pavlovian fear conditioning and extinction. N-methyl-D-aspartate receptor activation requires the binding of a coagonist, D-serine, which is synthesized from L-serine by the neuronal enzyme serine racemase (SR).

View Article and Find Full Text PDF

There is substantial evidence that NMDA receptor (NMDAR) hypofunction contributes to the pathophysiology of schizophrenia (SCZ). A recent large-scale genome-wide association study identified serine racemase (SR), the enzyme that produces the NMDAR co-agonist D-serine, as a risk gene for SCZ. Serine racemase knockout (SR-/-) mice, which lack D-serine, exhibit many of the neurochemical and behavioral abnormalities observed in SCZ.

View Article and Find Full Text PDF