Molecular factors that contribute to the diverse spatial and temporal patterns of starch granule initiation between species and organs are poorly understood. Wheat (Triticum sp.) endosperm contains both large A-type granules initiated during early grain development and small B-type granules that initiate about 10 to 15 days later.
View Article and Find Full Text PDFBacterial cellulose (BC) consists of a complex three-dimensional organization of ultrafine fibers which provide unique material properties such as softness, biocompatibility, and water-retention ability, of key importance for biomedical applications. However, there is a poor understanding of the molecular features modulating the macroscopic properties of BC gels. We have examined chemically pure BC hydrogels and composites with arabinoxylan (BC-AX), xyloglucan (BC-XG), and high molecular weight mixed-linkage glucan (BC-MLG).
View Article and Find Full Text PDFWe investigated whether Cas9-mediated mutagenesis of starch-branching enzymes (SBEs) in tetraploid potatoes could generate tuber starches with a range of distinct properties. Constructs containing the Cas9 gene and sgRNAs targeting SBE1, SBE2 or both genes were introduced by Agrobacterium-mediated transformation or by PEG-mediated delivery into protoplasts. Outcomes included lines with mutations in all or only some of the homoeoalleles of SBE genes and lines in which homoeoalleles carried several different mutations.
View Article and Find Full Text PDFA bottleneck in the production of biodiesel from microalgae is the dewatering and lipid extraction process which is the dominant energy penalty and cost. A novel biodiesel production platform based on vortex fluidic device (VFD)-assisted direct transesterification (DT) of wet microalgal biomass of Chloroparva pannonica was developed and evaluated. Fatty acid extraction and fatty acid to FAME conversion efficiencies were used at different parameter settings to evaluate performance of the processing technology in confined and continuous mode.
View Article and Find Full Text PDFThe worldwide annual production of lobster was 165,367 tons valued over $3.32 billion in 2004, but this figure rose up to 304,000 tons in 2012. Over half the volume of the worldwide lobster production has been processed to meet the rising global demand in diversified lobster products.
View Article and Find Full Text PDFPlant cell walls are composed predominantly of cellulose, a range of non-cellulosic polysaccharides and lignin. The walls account for a large proportion not only of crop residues such as wheat straw and sugarcane bagasse, but also of residues of the timber industry and specialist grasses and other plants being grown specifically for biofuel production. The polysaccharide components of plant cell walls have long been recognized as an extraordinarily large source of fermentable sugars that might be used for the production of bioethanol and other renewable liquid transport fuels.
View Article and Find Full Text PDFSorghum vegetative tissues are becoming increasingly important for biofuel production. The composition of sorghum stem tissues is influenced by genotype, environment and photoperiod sensitivity, and varies widely between varieties and also between different stem tissues (outer rind vs inner pith). Here, the amount of cellulose, (1,3;1,4)-β-glucan, arabinose and xylose in the stems of twelve diverse sorghum varieties, including four photoperiod-sensitive varieties, was measured.
View Article and Find Full Text PDFPlant biomass from different species is heterogeneous, and this diversity in composition can be mined to identify materials of value to fuel and chemical industries. Agave produces high yields of energy-rich biomass, and the sugar-rich stem tissue has traditionally been used to make alcoholic beverages. Here, the compositions of Agave americana and Agave tequilana leaves are determined, particularly in the context of bioethanol production.
View Article and Find Full Text PDFGlobal grape production could generate up to 13 Mt/yr of wasted biomass. The compositions of Cabernet Sauvignon (red marc) and Sauvignon Blanc (white marc) were analyzed with a view to using marc as raw material for biofuel production. On a dry weight basis, 31-54% w/w of the grape marc consisted of carbohydrate, of which 47-80% was soluble in aqueous media.
View Article and Find Full Text PDFThe mechanisms underlying the biosynthesis of cellulose in plants are complex and still poorly understood. A central question concerns the mechanism of microfibril structure and how this is linked to the catalytic polymerization action of cellulose synthase (CESA). Furthermore, it remains unclear whether modification of cellulose microfibril structure can be achieved genetically, which could be transformative in a bio-based economy.
View Article and Find Full Text PDF