Publications by authors named "Kendall A Curtis"

Brain connectivity arises from interactions across biophysical scales, ranging from molecular to cellular to anatomical to network level. To date, there has been little progress toward integrated analysis across these scales. To bridge this gap, from a unique cohort of 98 individuals, we collected antemortem neuroimaging and genetic data, as well as postmortem dendritic spine morphometric, proteomic and gene expression data from the superior frontal and inferior temporal gyri.

View Article and Find Full Text PDF

Two-photon microscopy enables imaging of calcium signaling at cellular or subcellular resolution up to hundreds of microns deep in the living brain. Changes in the brightness of fluorescent calcium indicators provide a readout of calcium levels over time, affording information about neuronal activity and/or calcium-dependent subcellular signaling. Here, we describe a protocol for repeated two-photon imaging of calcium signals in mice expressing a genetically encoded calcium indicator that have been implanted with a chronic cranial window.

View Article and Find Full Text PDF

Episodic memory in older adults is varied and perceived to rely on numbers of synapses or dendritic spines. We analyzed 2157 neurons among 128 older individuals from the Religious Orders Study and Rush Memory and Aging Project. Analysis of 55,521 individual dendritic spines by least absolute shrinkage and selection operator regression and nested model cross-validation revealed that the dendritic spine head diameter in the temporal cortex, but not the premotor cortex, improved the prediction of episodic memory performance in models containing β amyloid plaque scores, neurofibrillary tangle pathology, and sex.

View Article and Find Full Text PDF

Unlabelled: Neuroimaging is commonly used to infer human brain connectivity, but those measurements are far-removed from the molecular underpinnings at synapses. To uncover the molecular basis of human brain connectivity, we analyzed a unique cohort of 98 individuals who provided neuroimaging and genetic data contemporaneous with dendritic spine morphometric, proteomic, and gene expression data from the superior frontal and inferior temporal gyri. Through cellular contextualization of the molecular data with dendritic spine morphology, we identified hundreds of proteins related to synapses, energy metabolism, and RNA processing that explain between-individual differences in functional connectivity and structural covariation.

View Article and Find Full Text PDF
Article Synopsis
  • Proteomic studies on postmortem human brain tissue have assessed the effects of aging and neurodegenerative diseases, particularly Alzheimer's, but identifying specific proteins that influence biological processes remains a challenge.
  • A cross-platform analysis focused on synaptic processes in the entorhinal cortex was conducted, using mass spectrometry to identify 2260 proteins and correlate them with dendritic spine metrics.
  • The study successfully pinpointed Twinfilin-2 (TWF2) as a key protein linked to spine length, and experimentally validated that enhancing TWF2 levels boosts thin spine growth in neurons, thus contributing to a deeper understanding of synaptic alterations in Alzheimer's.
View Article and Find Full Text PDF

Alzheimer's disease (AD) therapies predominantly focus on β-amyloid (Aβ), but Aβ effects may be maximal before clinical symptoms appear. Downstream of Aβ, dendritic spine loss correlates most strongly with cognitive decline in AD. Rho-associated kinases (ROCK1 and ROCK2) regulate the actin cytoskeleton, and ROCK1 and ROCK2 protein abundances are increased in early AD.

View Article and Find Full Text PDF

Rho-associated protein kinases (ROCK) 1 and 2 are attractive drug targets for a range of neurologic disorders; however, a critical barrier to ROCK-based therapeutics is ambiguity over whether there are isoform-specific roles for ROCKs in neuronal structural plasticity. Here, we used a genetics approach to address this long-standing question by analyzing both male and female adult ROCK1 and ROCK2 mice compared to littermate controls. Individual pyramidal neurons in the medial prefrontal cortex (mPFC) were targeted for iontophoretic microinjection of fluorescent dye, followed by high-resolution confocal microscopy and neuronal 3D reconstructions for morphometry analysis.

View Article and Find Full Text PDF

Objective: Neuroimaging and other biomarker assays suggest that the pathological processes of Alzheimer's disease (AD) begin years prior to clinical dementia onset. However, some 30 to 50% of older individuals who harbor AD pathology do not become symptomatic in their lifetime. It is hypothesized that such individuals exhibit cognitive resilience that protects against AD dementia.

View Article and Find Full Text PDF