The Macrophage-Inducible C-type Lectin receptor (Mincle) plays a critical role in innate immune recognition and pathology, and therefore represents a promising target for vaccine adjuvants. Innovative trehalose-based Mincle agonists with improved pharmacology and potency may prove useful in the development of Th17-mediated adaptive immune responses. Herein, we report on in vitro and in silico investigations of specific Mincle ligand-receptor interactions required for the effective receptor engagement and activation of Th17-polarizing cytokines.
View Article and Find Full Text PDFTuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is one of the top infectious killers in the world. The only licensed vaccine against TB, Bacille Calmette-Guérin (BCG), provides variable protection against pulmonary TB, especially in adults. Hence, novel TB vaccine approaches are urgently needed.
View Article and Find Full Text PDFAdjuvants and immunomodulators that effectively drive a Th17-skewed immune response are not part of the standard vaccine toolkit. Vaccine adjuvants and delivery technologies that can induce Th17 or Th1/17 immunity and protection against bacterial pathogens, such as tuberculosis (TB), are urgently needed. Th17-polarized immune response can be induced using agonists that bind and activate C-type lectin receptors (CLRs) such as macrophage inducible C-type lectin (Mincle).
View Article and Find Full Text PDFMost known synthetic toll-like receptor 4 (TLR4) agonists are carbohydrate-based lipid-A mimetics containing several fatty acyl chains, including a labile 3--acyl chain linked to the C-3 position of the non-reducing sugar known to undergo cleavage impacting stability and resulting in loss of activity. To overcome this inherent instability, we rationally designed a new class of chemically more stable synthetic TLR4 ligands that elicit robust innate and adaptive immune responses. This new class utilized a diamino allose phosphate (DAP) scaffold containing a nonhydrolyzable 3-amide bond instead of the classical 3-ester.
View Article and Find Full Text PDFThe identification of Mincle as the C-type lectin receptor on innate immune cells responsible for binding TDM and the realization that this receptor could be key to productive vaccines for mycobacterial infection has raised interest in the development of synthetic Mincle ligands as novel adjuvants. We recently reported on the synthesis and evaluation of Brartemicin analog UM-1024 that demonstrated Mincle agonist activity, exhibiting potent Th1/Th17 adjuvant activity that was greater than that of trehalose dibehenate (TDB). Our pursuit to understand Mincle/ligand relationships and improve the pharmacologic properties of the ligands has expanded and continues to reveal new and exciting structure activity relationships.
View Article and Find Full Text PDFMincle agonists have been shown to induce inflammatory cytokine production, such as tumor necrosis factor-alpha (TNF) and promote the development of a Th1/Th17 immune response that might be crucial to development of effective vaccination against pathogens such as Mycobacterium tuberculosis. As an expansion of our previous work, a library of 6,6'-amide and sulfonamide α,α-d-trehalose compounds with various substituents on the aromatic ring was synthesized efficiently in good to excellent yields. These compounds were evaluated for their ability to activate the human C-type lectin receptor Mincle by the induction of cytokines from human peripheral blood mononuclear cells.
View Article and Find Full Text PDFTo date there is no clinically approved adjuvant to drive a protective T-helper cell 17 (Th17) immune response against Mycobacterium tuberculosis (Mtb). Trehalose Dimycolate (TDM) is a glycolipid molecule found in the cell wall of Mtb and similar species. Our team has discovered novel synthetic TDM derivatives that target Mincle receptors and when presented on the surface of amine functionalized silica nanoparticles (A-SNPs) adopt the requisite supramolecular structure for Mincle receptor agonism.
View Article and Find Full Text PDF6,6'-Aryl trehalose derivatives have been synthesized with a view towards identifying novel Th-17-inducing vaccine adjuvants based on the high affinity Mincle ligand Brartemicin. The initial structure-activity relationships of these novel trehalose-based compounds were investigated. All compounds have been evaluated for their ability to engage the Mincle receptor and induce a potential pro-Th17 cytokine profile from human peripheral blood mononuclear cells based on IL-6 production in human peripheral blood mononuclear cells.
View Article and Find Full Text PDF() continues to be a major health threat worldwide, and the development of vaccines could play a pivotal role in the prevention and control of this devastating epidemic. Th17-mediated immunity has been implicated in disease protection correlates of immune protection against . Currently, there are no approved adjuvants capable of driving a Th17 response in a vaccine setting.
View Article and Find Full Text PDFDespite the ever present need for an effective () vaccine, efforts for development have been largely unsuccessful. Correlates of immune protection against are not wholly defined, but Th1 and likely Th17 adaptive immune responses have been demonstrated to be necessary for vaccine-mediated protection. Unfortunately, no approved adjuvants are able to drive a Th17 response, though recent clinical trials with CAF01 have demonstrated proof of concept.
View Article and Find Full Text PDFLigation of Dectin-1 by fungal glucans elicits a Th17 response that is necessary for clearing many fungal pathogens. Laminarin is a (1→3, 1→6)-β-glucan that is widely reported to be a Dectin-1 antagonist, however, there are reports that laminarin is also a Dectin-1 agonist. To address this controversy, we assessed the physical properties, structure, purity, Dectin-1 binding, and biological activity of five different laminarin preparations from three different commercial sources.
View Article and Find Full Text PDFTLR4 agonists that favor TRIF-dependent signaling and the induction of type 1 interferons may have potential as vaccine adjuvants with reduced toxicity. CRX-547 (4), a member of the aminoalkyl glucosaminide 4-phosphate (AGP) class of lipid A mimetics possessing three (R)-3-decanoyloxytetradecanoyl groups and d-relative configuration in the aglycon, selectively reduces MyD88-dependent signaling resulting in TRIF-selective signaling, whereas the corresponding secondary ether lipid 6a containing (R)-3-decyloxytetradecanoyl groups does not. In order to determine which secondary acyl groups are important for the reduction in MyD88-dependent signaling activity of 4, the six possible ester/ether hybrid derivatives of 4 and 6a were synthesized and evaluated for their ability to induce NF-κB in a HEK293 cell reporter assay.
View Article and Find Full Text PDFTo overcome the chemical and metabolic instability of the secondary fatty acyl residues in the AGP class of lipid A mimetics, the secondary ether lipid analogs of the potent TLR4 agonist CRX-527 (2) and TLR4 antagonist CRX-526 (3) were synthesized and evaluated along with their ester counterparts for agonist/antagonist activity in both in vitro and in vivo models. Like CRX-527, the secondary ether lipid 4 showed potent agonist activity in both murine and human models. Ether lipid 5, on the other hand, showed potent TLR4 antagonist activity similar to CRX-526 in human cell assays, but did not display any antagonist activity in murine models and, in fact, was weakly agonistic.
View Article and Find Full Text PDFBenzopyrans are selective estrogen receptor (ER) beta agonists (SERBAs), which bind the ER receptor subtypes alpha and beta in opposite orientations. We have used structure based drug design to show that this unique phenomena can be exploited via substitution at the 8-position of the benzopyran A-ring to disrupt binding to ERalpha, thus improving ERbeta subtype selectivity. X-ray cocrystal structures with ERalpha and ERbeta are supportive of this approach to improve selectivity in this structural class.
View Article and Find Full Text PDFMethodology to prepare 8-amido-2-amino-1,2,3,4-tetrahydro-2-dibenzofurans, analogues with a fluorine substituent incorporated in the 6-, 7-, and 9-positions, and a difluorinated analogue with fluorines in the 6- and 9-positions is described. The tetrahydrodibenzofuran ring systems are prepared by acid-catalyzed [3,3]-sigmatropic rearrangement of O-aryloximes. Regioselective reactions to prepare the requisite O-aryloxime intermediates from commercially available fluorobenzene derivatives are discussed.
View Article and Find Full Text PDF