Two-dimensional interfaces between crystalline materials have been shown to generate unusual interfacial electronic states in complex oxides. Recently, a one-dimensional interface has been realized in hexagonal boron nitride and graphene planar heterostructures, where a polar-on-nonpolar one-dimensional boundary is expected to possess peculiar electronic states associated with edge states of graphene and the polarity of boron nitride. Here we present a combined scanning tunnelling microscopy and first-principles theory study of the graphene-boron nitride boundary to provide a first glimpse into the spatial and energetic distributions of the one-dimensional boundary states down to atomic resolution.
View Article and Find Full Text PDFBy adapting the concept of epitaxy to two-dimensional space, we show the growth of a single-atomic-layer, in-plane heterostructure of a prototypical material system--graphene and hexagonal boron nitride (h-BN). Monolayer crystalline h-BN grew from fresh edges of monolayer graphene with atomic lattice coherence, forming an abrupt one-dimensional interface, or boundary. More important, the h-BN lattice orientation is solely determined by the graphene, forgoing configurations favored by the supporting copper substrate.
View Article and Find Full Text PDFAll large-scale graphene films contain extended topological defects dividing graphene into domains or grains. Here, we spatially map electronic transport near specific domain and grain boundaries in both epitaxial graphene grown on SiC and CVD graphene on Cu subsequently transferred to a SiO2 substrate, with one-to-one correspondence to boundary structures. Boundaries coinciding with the substrate step on SiC exhibit a significant potential barrier for electron transport of epitaxial graphene due to the reduced charge transfer from the substrate near the step edge.
View Article and Find Full Text PDFOne-dimensional arrays of gold quantum dots (QDs) on insulating boron nitride nanotubes (BNNTs) can form conduction channels of tunneling field-effect transistors. We demonstrate that tunneling currents can be modulated at room temperature by tuning the lengths of QD-BNNTs and the gate potentials. Our discovery will inspire the creative use of nanostructured metals and insulators for future electronic devices.
View Article and Find Full Text PDFThe epitaxial growth and preferred molecular orientation of copper phthalocyanine (CuPc) molecules on graphene has been systematically investigated and compared with growth on Si substrates, demonstrating the role of surface-mediated interactions in determining molecular orientation. X-ray scattering and diffraction, scanning tunneling microscopy, scanning electron microscopy, and first-principles theoretical calculations were used to show that the nucleation, orientation, and packing of CuPc molecules on films of graphene are fundamentally different compared to those grown on Si substrates. Interfacial dipole interactions induced by charge transfer between CuPc molecules and graphene are shown to epitaxially align the CuPc molecules in a face-on orientation in a series of ordered superstructures.
View Article and Find Full Text PDFWe report on improved electrical conductivity in poly(3-hexylthiophene) (P3HT)/2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) composite nanowires grown using an anodized aluminum oxide (AAO) template. The electrical conductivity of individual nanowire measured by four-probe scanning tunneling microscopy shows that F4-TCNQ molecules are effectively doped into P3HT by capillary force. The resistivity is tuned in the 0.
View Article and Find Full Text PDFAn important development in recent synthesis strategies is the formation of electronically coupled one and two-dimensional organic systems for potential applications in nanoscale molecule-based devices. Here, we assemble one-dimensional spin chains by covalently linking basic molecular building blocks on a Au(111) surface. Their structural properties are studied by scanning tunneling microscopy and the Kondo effect of the basic molecular blocks inside the chains is probed by scanning tunneling spectroscopy.
View Article and Find Full Text PDFThe sodium chloride surface is one of the most common platforms for the study of catalysts, thin film growth, and atmospheric aerosols. Here we report a nanoscale periodic modulation pattern on the surface of a cleaved NaCl single crystal, revealed by non-contact atomic force microscopy with a tuning fork sensor. The surface pattern shows two orthogonal domains, extending over the entire cleavage surface.
View Article and Find Full Text PDF