Publications by authors named "Kenakin T"

Opioid receptors, a subfamily of G protein-coupled receptors (GPCRs), are key therapeutic targets. In the canonical GPCR activation model, agonist binding is required for receptor-G protein complex formation, while antagonists prevent G protein coupling. However, many GPCRs exhibit basal activity, allowing G protein association without an agonist.

View Article and Find Full Text PDF

Despite advances in chemical, computational and biological sciences, the rate of attrition of drug candidates in clinical development is still high. A key point in the small-molecule discovery process that could provide opportunities to help address this challenge is the pharmacological characterization of hit and lead compounds, culminating in the selection of a drug candidate. Deeper characterization is increasingly important, because the 'quality' of drug efficacy, at least for G protein-coupled receptors (GPCRs), is now understood to be much more than activation of commonly evaluated pathways such as cAMP signalling, with many more 'efficacies' of ligands that could be harnessed therapeutically.

View Article and Find Full Text PDF

Several non-caloric sweeteners exhibit a delay in sweetness onset and a sweetness linger after sampling. These temporal properties are thought to be the result of non-specific interactions with cell membranes and proteins in the oral cavity. Data and analysis presented in this report also support the potential involvement of receptor affinity and binding kinetics to this phenomenon.

View Article and Find Full Text PDF

Olfactory receptors are members of class A (rhodopsin-like) family of G protein-coupled receptors (GPCRs). Their expression and function have been increasingly studied in nonolfactory tissues, and many have been identified as potential therapeutic targets. In this manuscript, we focus on the discovery of novel ligands for the olfactory receptor family 51 subfamily E2 (OR51E2).

View Article and Find Full Text PDF

Biased signalling is a natural result of GPCR allosteric function and should be expected from any and all synthetic and natural agonists. Therefore, it may be encountered in all agonist discovery projects and must be considered as a beneficial (or possible detrimental) feature of new candidate molecules. While bias is detected easily, the synoptic nature of GPCR signalling makes translation of simple in vitro bias to complex in vivo systems problematic.

View Article and Find Full Text PDF

With the advent of functional screening, more allosteric molecules are being discovered and developed as possible therapeutic entities. Allosteric proteins are unique because of two specific properties: 1) separate binding sites for allosteric modulators and guests and 2) mandatory alteration of receptor conformation upon binding of allosteric modulators. For G protein-coupled receptors, these properties produce many beneficial effects on pharmacologic systems that are described here.

View Article and Find Full Text PDF
Article Synopsis
  • Niacin, an agonist of the hydroxycarboxylic acid receptor 2 (HCA2), has been used for a long time to treat dyslipidemia but commonly causes skin flushing as a side effect.
  • Researchers have been trying to find new HCA2-targeting agents that lower lipids without adverse effects, although the exact signaling mechanisms of HCA2 have not been well understood.
  • This study presents the detailed structures of HCA2-G complexed with the agonist MK-6892 and in its inactive state, shedding light on how HCA2 activates and signals, which could help in developing new treatments targeting this receptor.
View Article and Find Full Text PDF

The NTSR1 neurotensin receptor (NTSR1) is a G protein-coupled receptor (GPCR) found in the brain and peripheral tissues with neurotensin (NTS) being its endogenous peptide ligand. In the brain, NTS modulates dopamine neuronal activity, induces opioid-independent analgesia, and regulates food intake. Recent studies indicate that biasing NTSR1 toward β-arrestin signaling can attenuate the actions of psychostimulants and other drugs of abuse.

View Article and Find Full Text PDF

GPCRs modulate a plethora of physiological processes and mediate the effects of one-third of FDA-approved drugs. Depending on which ligand activates a receptor, it can engage different intracellular transducers. This 'biased signalling' paradigm requires that we now characterize physiological signalling not just by receptors but by ligand-receptor pairs.

View Article and Find Full Text PDF

We have shown that CB receptor negative allosteric modulators (NAMs) attenuated the reinstatement of cocaine-seeking behaviors in rats. In an effort to further define the structure-activity relationships and assess the druglike properties of the 3-(4-chlorophenyl)-1-(phenethyl)urea-based CB NAMs that we recently reported, we introduced substituents of different electronic properties and sizes to the phenethyl group and evaluated their potency in CB calcium mobilization, cAMP, and GTPγS assays. We found that 3-position substitutions such as Cl, F, and Me afforded enhanced CB potency, whereas 4-position analogues were generally less potent.

View Article and Find Full Text PDF

Signaling 'bias' is a phenomenon whereby the natural allosteric probe dependence of seven transmembrane receptors allows different receptor conformations (stabilized by different agonists) to activate some signaling pathways (coupled to pleiotropically coupled receptors) more than others at the expense of those other pathways. There are a number of relevant scenarios where such an activity could be therapeutically beneficial therefore there are practical reasons why this property of receptors should be exploited. This paper discusses recent ideas around attempts to harness this potentially useful idea and also the limitations around the current methods available to do so.

View Article and Find Full Text PDF

GPR68, an orphan G-protein coupled receptor, senses protons, couples to multiple G-proteins, and is also activated or inhibited by divalent metal ions. It has seven extracellular histidine residues, although it is not clear how these histidine residues play a role in both proton-sensing and metal ion modulation. Here we demonstrate that divalent metal ions are allosteric modulators that can activate or inhibit proton activity in a concentration- and pH-dependent manner.

View Article and Find Full Text PDF

Humans perceive sweet taste via activation of a specific taste receptor expressed at the surface of taste receptor cells located on the tongue and soft palate papillae. The sweet taste receptor functions as an obligate heterodimer, comprising two different class C GPCR subunits. This receptor is unique in that it is activated or modulated by a plethora of ligands from highly diverse chemical classes, from small molecules to peptides and proteins and interacting with topologically distinct sites on each of its subunits.

View Article and Find Full Text PDF

The non-activating allosteric modulator AZ1729, specific for free fatty acid receptor 2 (FFAR2), transfers the orthosteric FFAR2 agonists propionate and the P2YR specific agonist ATP into activating ligands that trigger an assembly of the neutrophil superoxide generating NADPH-oxidase. The homologous priming effect on the propionate response and the heterologous receptor cross-talk sensitized ATP response mediated by AZ1729 are functional characteristics shared with Cmp58, another non-activating allosteric FFAR2 modulator. In addition, AZ1729 also turned Cmp58 into a potent activator of the superoxide generating neutrophil NADPH-oxidase, and in agreement with the allosteric modulation concept, the effect was reciprocal in that Cmp58 turned AZ1729 into a potent activating allosteric agonist.

View Article and Find Full Text PDF

The neuromodulator melatonin synchronizes circadian rhythms and related physiological functions through the actions of two G-protein-coupled receptors: MT and MT. Circadian release of melatonin at night from the pineal gland activates melatonin receptors in the suprachiasmatic nucleus of the hypothalamus, synchronizing the physiology and behaviour of animals to the light-dark cycle. The two receptors are established drug targets for aligning circadian phase to this cycle in disorders of sleep and depression.

View Article and Find Full Text PDF

Melatonin is a neurohormone that translates the circadian rhythm to the peripheral organs through a series of binding sites identified as G protein-coupled receptors MT and MT. Due to minute amounts of receptor proteins in target organs, the main tool of studies of the melatoninergic system is recombinant expression of the receptors in cellular hosts. Although a number of studies exist on these receptors, studies of several signaling pathways using a large number of melatoninergic compounds are rather limited.

View Article and Find Full Text PDF

Pharmacology, the chemical control of physiology, emerged as an offshoot of physiology when the physiologists using chemicals to probe physiological systems became more interested in the probes than the systems. Pharmacologists were always, and in many ways still are, bound to study drugs in systems they do not fully understand. Under these circumstances, null methods were the main ways in which conclusions about biologically active molecules were made.

View Article and Find Full Text PDF

Mu opioid receptor (MOR)-targeting analgesics are efficacious pain treatments, but notorious for their abuse potential. In preclinical animal models, coadministration of traditional kappa opioid receptor (KOR)-targeting agonists with MOR-targeting analgesics can decrease reward and potentiate analgesia. However, traditional KOR-targeting agonists are well known for inducing antitherapeutic side effects (psychotomimesis, depression, anxiety, dysphoria).

View Article and Find Full Text PDF

Polycomb-directed repression of gene expression is frequently misregulated in human diseases. A quantitative and target-specific cellular assay was utilized to discover the first potent positive allosteric modulator (PAM) peptidomimetic, UNC4976, of nucleic acid binding by CBX7, a chromodomain methyl-lysine reader of Polycomb repressive complex 1. The PAM activity of UNC4976 resulted in enhanced efficacy across three orthogonal cellular assays by simultaneously antagonizing H3K27me3-specific recruitment of CBX7 to target genes while increasing non-specific binding to DNA and RNA.

View Article and Find Full Text PDF

This paper describes the behavior of binding and functional receptor systems where an antagonist of the receptor/G protein binding reaction is added as a blocker of agonist-induced receptor function. For agonist radioligands, the reduction of G protein receptor interaction leads to a possible change in the binding affinity of the agonist radioligand to the receptor. Reciprocally, the allosteric cooperativity between the agonist and the G protein binding site antagonist (quantified by the factor γ) affects the potency of the G protein antagonist modulator; this model presents the various profiles that would be expected for modulators that reduce (γ = 0.

View Article and Find Full Text PDF

Drugs such as positive allosteric modulators (PAMs) produce complex behaviors when acting on tissues in different physiological contexts . This study describes the use of functional assays of varying receptor sensitivity to unveil the various behaviors of PAMs and thus quantify allosteric effect through system independent scales. Muscarinic receptor activation with acetylcholine (ACh) was used to the demonstrate activity of the PAM agonist 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid, Benzyl quinolone carboxylic acid (BQCA) in terms of direct agonism, potentiation of ACh affinity, and ACh efficacy.

View Article and Find Full Text PDF

G protein-coupled receptor 68 (GPR68) is an understudied orphan G protein-coupled receptor (GPCR). It is expressed most abundantly in the brain, potentially playing important roles in learning and memory. Pharmacological studies with GPR68 have been hindered by lack of chemical tools that can selectively modulate its activity.

View Article and Find Full Text PDF

Through pharmacological procedures, indices of drug activity can be obtained that transcend the systems in which they are measured. If (i) affinity, (ii) efficacies, (iii) orthosteric versus allosteric interaction, and (iv) rate of receptor offset can be determined, activity can be predicted in all systems. This can yield more detailed profiles (fingerprints) of efficacy to better define the required activities of follow-up molecules should the original candidates fail in the clinic.

View Article and Find Full Text PDF

A great deal of experimental evidence suggests that ligands can stabilize different receptor active states that go on to interact with cellular signaling proteins to form a range of different complexes in varying quantities. In pleiotropically linked receptor systems, this leads to selective activation of some signaling pathways at the expense of others (biased signaling). This article summarizes the current knowledge about the complex components of receptor systems, the evidence that biased signaling is used in natural physiology to fine-tune signaling, and the current thoughts on how this mechanism may be applied to the design of better drugs.

View Article and Find Full Text PDF