The development of durable photosensitizers is pivotal for advancing phototherapeutic applications in biomedicine. Here, we introduce a core-shell azobenzene-spiropyran structure on gold nanoparticles, engineered to enhance singlet oxygen generation. These nano-photosensitizers exhibit increased structural stability and thermal resistance, as demonstrated by slowed O-N-C bond recombination dynamics via in-situ Raman spectroscopy.
View Article and Find Full Text PDFBODIPY analogs are promising photosensitizers for molecular phototherapy; however, they exhibit high dark cytotoxicity and limited singlet oxygen generation capacity. In this study, we developed self-assembled core-shell nanophotosensitizers by linking a bipyridine group to BODIPY (Bpy-BODIPY) and promoting J-aggregation on gold nanourchins. This design enhances photostability and reduces the energy gap between the lowest singlet excited state and the lower triplet state, facilitating efficient singlet oxygen production.
View Article and Find Full Text PDFAdv Colloid Interface Sci
August 2024
Stimuli-responsive polymeric micelles have emerged as a revolutionary approach for enhancing the in vivo stability, biocompatibility, and targeted delivery of functional nanoparticles (FNPs) in biomedicine. This article comprehensively reviews the preparation methods of these polymer micelles, detailing the innovative strategies employed to introduce stimulus responsiveness and surface modifications essential for precise targeting. We delve into the breakthroughs in utilizing these micelles to selectively deliver various FNPs including magnetic nanoparticles, upconversion nanoparticles, gold nanoparticles, and quantum dots, highlighting their transformative impact in the biomedical realm.
View Article and Find Full Text PDFThe determination of water quality heavily depends on the selection of parameters recorded from water samples for the water quality index (WQI). Data-driven methods, including machine learning models and statistical approaches, are frequently used to refine the parameter set for four main reasons: reducing cost and uncertainty, addressing the eclipsing problem, and enhancing the performance of models predicting the WQI. Despite their widespread use, there is a noticeable gap in comprehensive reviews that systematically examine previous studies in this area.
View Article and Find Full Text PDFAddressing significant medical challenges arising from tissue damage and organ failure, the field of tissue engineering has evolved to provide revolutionary approaches for regenerating functional tissues and organs. This involves employing various techniques, including the development and application of novel nanomaterials. Among them, chiral nanomaterials comprising non-superimposable nanostructures with their mirror images have recently emerged as innovative biomaterial candidates to guide tissue regeneration due to their unique characteristics.
View Article and Find Full Text PDFRNA interference (RNAi) technology has been a promising treatment strategy for combating intractable diseases. However, the applications of RNAi in clinical are hampered by extracellular and intracellular barriers. To overcome these barriers, various siRNA delivery systems have been developed in the past two decades.
View Article and Find Full Text PDFIn recent years, messenger RNA (mRNA) vaccines have exhibited great potential to replace conventional vaccines owing to their low risk of insertional mutagenesis, safety and efficacy, rapid and scalable production, and low-cost manufacturing. With the great achievements of chemical modification and sequence optimization methods of mRNA, the key to the success of mRNA vaccines is strictly dependent on safe and efficient gene vectors. Among various delivery platforms, non-viral mRNA vectors could represent perfect choices for future clinical translation regarding their safety, sufficient packaging capability, low immunogenicity, and versatility.
View Article and Find Full Text PDFNanofiber meshes (NFMs) loaded with therapeutic agents are very often employed to treat hard-to-heal wounds such as diabetic wounds. However, most of the NFMs have limited capability to load multiple or hydrophilicity distinctive-therapeutic agents. The therapy strategy is therefore significantly hampered.
View Article and Find Full Text PDFWith the increasing demands for novel flexible organic electronic devices, conductive polymers are now becoming the rising star for reaching such targets, which has witnessed significant breakthroughs in the fields of thermoelectric devices, solar cells, sensors, and hydrogels during the past decade due to their outstanding conductivity, solution-processing ability, as well as tailorability. However, the commercialization of those devices still lags markedly behind the corresponding research advances, arising from the not high enough performance and limited manufacturing techniques. The conductivity and micro/nano-structure of conductive polymer films are two critical factors for achieving high-performance microdevices.
View Article and Find Full Text PDFDue to the excellent biocompatible physicochemical performance, luminogens with aggregation-induced emission (AIEgens) characteristics have played a significant role in biomedical fluorescence imaging recently. However, screening AIEgens for special applications takes a lot of time and efforts by using conventional chemical synthesis route. Fortunately, artificial intelligence techniques that could predict the properties of AIEgen molecules would be helpful and valuable for novel AIEgens design and synthesis.
View Article and Find Full Text PDFUnlabelled: With continuous mutations of SARS-CoV-2 virus, new highly contagious and fast-spreading variants have emerged, including Delta and Omicron. The popular label-free immunosensor based on surface plasmon resonance (SPR) technique can be used for real-time monitoring of the ligand-analyte or antibody-antigen interactions occurring on the sensor surface. In this work, an SPR-based biosensor combined with a nanodisk array was presented to enhance the sensitivity toward virus detection.
View Article and Find Full Text PDFIn the past 50 years, the advent of electronic technology to directly interface with neural tissue has transformed the fields of medicine and biology. Devices that restore or even replace impaired bodily functions, such as deep brain stimulators and cochlear implants, have ushered in a new treatment era for previously intractable conditions. Meanwhile, electrodes for recording and stimulating neural activity have allowed researchers to unravel the vast complexities of the human nervous system.
View Article and Find Full Text PDFBy acting as effective biomimetics of the lipid bilayers, membrane-intercalating conjugated oligoelectrolytes (MICOEs) can spontaneously insert themselves into both synthetic lipid bilayers and biological membranes. The modular and intentional molecular design of MICOEs enable a range of applications, such as bioproduction, biocatalysis, biosensing, and therapeutics. This tutorial review provides a structural evolution of MICOEs, which originated from the broader class of conjugated molecules, and analyses the drivers behind this evolutionary process.
View Article and Find Full Text PDFThis paper reports the fabrication, testing and obtained performance of a plasmonic sensor employing a gold (Au) nanohole array chip coated with tungsten disulphide (WS), which is then functionalized for the detection of protein-protein interactions. A key novelty is that the WS was deposited as a monoatomic layer using a wafer-scale synthesis method that successfully provided a film of both high quality and uniform thickness. The deposited WS film was transferred onto a Au nanohole array chip using a novel method and was subsequently functionalized with biotin.
View Article and Find Full Text PDFThe liver is the largest internal organ in the human body with largest mass of glandular tissue. Modeling the liver has been challenging due to its variety of major functions, including processing nutrients and vitamins, detoxification, and regulating body metabolism. The intrinsic shortfalls of conventional two-dimensional (2D) cell culture methods for studying pharmacokinetics in parenchymal cells (hepatocytes) have contributed to suboptimal outcomes in clinical trials and drug development.
View Article and Find Full Text PDFObserving a Goos-Hänchen (GH) shift of the incident light beam provides a simple and convenient method of detecting fast phase variations without the need for cumbersome direct phase measurements. Here, we show that few-monolayers-thick van der Waals structures (WS , MoSe and graphene) nano-engineered onto a plasmonic surface can enhance the phase variation sensitivity to analyte presence, leading to more than 3 orders of magnitude increase in the Goos-Hänchen shift (ca. 886 mm/RIU for a WS /graphene/Au multilayer).
View Article and Find Full Text PDFGene therapy has shown great potential in the treatment of many diseases by downregulating the expression of certain genes. The development of gene vectors as a vehicle for gene therapy has greatly facilitated the widespread clinical application of nucleic acid materials (DNA, mRNA, siRNA, and miRNA). Currently, both viral and non-viral vectors are used as delivery systems of nucleic acid materials for gene therapy.
View Article and Find Full Text PDFA nature-inspired strategy is developed to build dual-network hydrogels made up of rigid graphene oxide-functionalized nanocellulose (GO@NC) network and flexible poly[acrylamide-co-(acrylic acid)] (poly(AAm-co-AAc)) network. A pre-stretching method is used to form a muscle-shape anisotropic architecture. The penetration of poly(AAm-co-AAc) flexible network relieves the stiffness of NC network, thus improving the average elongation at break from 86.
View Article and Find Full Text PDFThe medical fraternity is currently burgeoned and stressed with a huge rush of patients who have inflammatory conditions, metabolite diseases, and cardiovascular diseases. In these circumstances, advanced sensing technologies could have a huge impact on the quality of life of patients. Given plasmonic resonance effects significantly improve the ability to rapidly and accurately detect biological markers, plasmonic technology is harnessed to develop a fast and accurate diagnosis that can provide timely intervention with the diseases and can also aid the recovery process by complementing the therapy stage.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
November 2022
Hydrogen sulfide (HS) is an important signal molecule involved in intracellular activities. To understand the role of HS in cellular physiological and pathological process, the development of sensitive and selective methods, especially biocompatible assays, for efficient monitoring the level of HS is necessary. Herein, we modified novel rare earth element europium (EU) based fluorescent nanospheres with azide (-N) based sensor to construct an ingenious ratiometric fluorescent nanoprobe EU-N3.
View Article and Find Full Text PDFNumerous revolutionary space missions have been initiated and planned for the following decades, including plans for novel spacecraft, exploration of the deep universe, and long duration manned space trips. Compared with space missions conducted over the past 50 years, current missions have features of spacecraft miniaturization, a faster task cycle, farther destinations, braver goals, and higher levels of precision. Tasks are becoming technically more complex and challenging, but also more accessible via commercial space activities.
View Article and Find Full Text PDFFunctional nanoporous materials are categorized as an important class of nanostructured materials because of their tunable porosity and pore geometry (size, shape, and distribution) and their unique chemical and physical properties as compared with other nanostructures and bulk counterparts. Progress in developing a broad spectrum of nanoporous materials has accelerated their use for extensive applications in catalysis, sensing, separation, and environmental, energy, and biomedical areas. The purpose of this review is to provide recent advances in synthesis strategies for designing ordered or hierarchical nanoporous materials of tunable porosity and complex architectures.
View Article and Find Full Text PDFPhotodynamic efficiency is strongly dependent on the generation rate of reactive oxygen species (ROS) and the tissue penetration depth. Recent advances in materials science reveal that organic molecules with room-temperature phosphorescence (RTP) can potentially serve as efficient photosensitizers owing to their limited dark cytotoxicity and abundant triplet excitons upon light irradiation. In this study, we combine RTP materials with two-photon excitation to improve the ROS generation, therapeutic precision, and tissue penetration of photodynamic therapy.
View Article and Find Full Text PDF