Publications by authors named "Ken-ichiro Shimazaki"

Plasma membrane H-ATPase provides the driving force for light-induced stomatal opening. However, the mechanisms underlying the regulation of its activity remain unclear. Here, we show that the phosphorylation of two Thr residues in the C-terminal autoinhibitory domain is crucial for H-ATPase activation and stomatal opening in Arabidopsis thaliana.

View Article and Find Full Text PDF

Light-induced stomatal opening stimulates CO2 uptake and transpiration in plants. Weak blue light under strong red light effectively induces stomatal opening. Blue light-dependent stomatal opening initiates light perception by phototropins, and the signal is transmitted to a plasma membrane H+-ATPase in guard cells via BLUE LIGHT SIGNALING 1 (BLUS1) kinase.

View Article and Find Full Text PDF

Phototropins (phot1 and phot2) are plant blue light receptor kinases that function to mediate phototropism, chloroplast movement, leaf flattening, and stomatal opening in Arabidopsis. Considerable progress has been made in understanding the mechanisms associated with phototropin receptor activation by light. However, the identities of phototropin signaling components are less well understood by comparison.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) function as key signaling molecules to inhibit stomatal opening and promote stomatal closure in response to diverse environmental stresses. However, how guard cells maintain basal intracellular ROS levels is not yet known. This study aimed to determine the role of autophagy in the maintenance of basal ROS levels in guard cells.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are ubiquitous signaling molecules involved in diverse physiological processes, including stomatal closure. Photosynthetic electron transport (PET) is the main source of ROS generation in plants, but whether it functions in guard cell signaling remains unclear. Here, we assessed whether PET functions in abscisic acid (ABA) signaling in guard cells.

View Article and Find Full Text PDF

Blue light (BL) is a fundamental cue for stomatal opening in both C3 and C4 plants. However, it is unknown whether crassulacean acid metabolism (CAM) plants open their stomata in response to BL. We investigated stomatal BL responses in the obligate CAM plants Kalanchoe pinnata and Kalanchoe daigremontiana that characteristically open their stomata at night and close them for part of the day, as contrasted with C3 and C4 plants.

View Article and Find Full Text PDF

The opening of stomata in plants in response to blue light is driven by the plasma membrane H-ATPase in guard cells. To evaluate the activation of the H-ATPase , we can use H-pumping by guard cells in response to blue light and fusicoccin. To do this, it is required to prepare a large amount of guard cell protoplasts and measure H-pumping in the protoplasts.

View Article and Find Full Text PDF

Stomata regulate gas exchange between plants and atmosphere by integrating opening and closing signals. Stomata open in response to low CO concentrations to maximize photosynthesis in the light; however, the mechanisms that coordinate photosynthesis and stomatal conductance have yet to be identified. Here we identify and characterize CBC1/2 (CONVERGENCE OF BLUE LIGHT (BL) AND CO 1/2), two kinases that link BL, a major component of photosynthetically active radiation (PAR), and the signals from low concentrations of CO in guard cells.

View Article and Find Full Text PDF

The plant hormone abscisic acid (ABA) confers drought tolerance in plants through stomatal closure and regulation of gene expression. The complex consisting of the ABA receptor PYRABACTIN RESISTANCE/REGULATORY COMPONENTS OF ABA RECEPTOR (PYR/RCAR), type 2C protein phosphatase (PP2C), and SNF1-related protein kinase 2 (SnRK2) has a key role in ABA signaling. Basic helix-loop-helix (bHLH) transcriptional activator ABA-RESPONSIVE KINASE SUBSTRATE1 (AKS1, also known as FBH3) is released from DNA by phosphorylation-induced monomerization in response to ABA in guard cells.

View Article and Find Full Text PDF

Stomata within the plant epidermis regulate CO2 uptake for photosynthesis and water loss through transpiration. Stomatal opening in Arabidopsis thaliana is determined by various factors, including blue light as a signal and multiple phytohormones. Plasma membrane transporters, including H+-ATPase, K+ channels and anion channels in guard cells, mediate these processes, and the activities and expression levels of these components determine stomatal aperture.

View Article and Find Full Text PDF

In green plants, the blue light receptor kinase phototropin mediates various photomovements and developmental responses, such as phototropism, chloroplast photorelocation movements (accumulation and avoidance), stomatal opening, and leaf flattening, which facilitate photosynthesis. In Arabidopsis, two phototropins (phot1 and phot2) redundantly mediate these responses. Two phototropin-interacting proteins, NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and ROOT PHOTOTROPISM 2 (RPT2), which belong to the NPH3/RPT2-like (NRL) family of BTB (broad complex, tramtrack, and bric à brac) domain proteins, mediate phototropism and leaf flattening.

View Article and Find Full Text PDF

Phototropin (phot1) is a blue light-activated plasma membrane-associated kinase that acts as the principal photoreceptor for shoot phototropism in Arabidopsis in conjunction with the signalling component Non-Phototropic Hypocotyl 3 (NPH3). PHOT1 is uniformly expressed throughout the Arabidopsis hypocotyl, yet decapitation experiments have localized the site of light perception to the upper hypocotyl. This prompted us to investigate in more detail the functional role of the hypocotyl apex, and the regions surrounding it, in establishing phototropism.

View Article and Find Full Text PDF

Stomata open in response to a beam of weak blue light under strong red light illumination. A blue light signal is perceived by phototropins and transmitted to the plasma membrane H(+)-ATPase that drives stomatal opening. To identify the components in this pathway, we screened for mutants impaired in blue light-dependent stomatal opening.

View Article and Find Full Text PDF

We have demonstrated that the Arabidopsis basic helix-loop-helix (bHLH) transcription factor, ABA-responsive kinase substrate 1 (AKS1; also known as FLOWERING BHLH 3, FBH3), enhances K(+) channel expression in guard cells leading to stomatal opening. The expression is suppressed by ABA-induced phosphorylation of AKS1. Here we show that the phosphorylation results in the monomerization of AKS1 multimers and inhibits AKS1 binding to DNA.

View Article and Find Full Text PDF

In Arabidopsis thaliana, phototropins (phot1 and phot2), light-activated receptor kinases, redundantly regulate various photoresponses such as phototropism, chloroplast photorelocation movement, stomatal opening, and leaf flattening. However, it is still unclear how phot1 and phot2 signals are integrated into a common target and regulate physiological responses. In the present study, we provide evidence that phot1 and phot2 phosphorylate BLUE LIGHT SIGNALING1 (BLUS1) kinase as a common substrate in stomatal opening.

View Article and Find Full Text PDF

Phototropins are light-activated receptor kinases that mediate a wide range of blue light responses responsible for the optimization of photosynthesis. Despite the physiological importance of phototropins, it is still unclear how they transduce light signals into physiological responses. Here, we succeeded in reproducing a primary step of phototropin signaling in vitro using a physiological substrate of phototropin, the BLUS1 (BLUE LIGHT SIGNALING1) kinase of guard cells.

View Article and Find Full Text PDF

Light is a major environmental factor required for stomatal opening. Blue light (BL) induces stomatal opening in higher plants as a signal under the photosynthetic active radiation. The stomatal BL response is not present in the fern species of Polypodiopsida.

View Article and Find Full Text PDF

Blue light (BL) induces stomatal opening through the activation of H+-ATPases with subsequent ion accumulation in guard cells. In most plant species, red light (RL) enhances BL-dependent stomatal opening. This RL effect is attributable to the chloroplasts of guard cell, the only cells in the epidermis possessing this organelle.

View Article and Find Full Text PDF

In the outer periclinal cytoplasm of leaf epidermal cells of an aquatic angiosperm Vallisneria, blue light induces "chloroplast de-anchoring", a rapid decline in the resistance of chloroplasts against centrifugal force. Chloroplast de-anchoring is known induced within 1 min of irradiation with high-fluence-rate blue light specifically, preceding the commencement of chloroplasts migration toward the anticlinal cytoplasm. However, its regulatory mechanism has remained elusive, although pharmacological analysis suggested that a calcium release from intracellular calcium stores is necessary for the response.

View Article and Find Full Text PDF

The plasma membrane H(+)-ATPase is the pump that provides the driving force for transport of numerous solutes in plant cells, and plays an essential role for the growth and maintenance of cell homeostasis. Recent investigations using guard cells with respect to blue-light-induced stomatal opening uncovered the regulatory mechanisms of the H(+)-ATPase, and revealed that the phosphorylation status of penultimate threonine in the C-terminus of H(+)-ATPase is key step for the activity regulation. The same regulatory mechanisms for the H(+)-ATPase were evidenced in hypocotyl elongation in response to ABA and auxin, suggesting that the phosphorylation of the penultimate threonine is a common regulatory mechanism for the H(+)-ATPase.

View Article and Find Full Text PDF

Opening of stomata in the plant facilitates photosynthetic CO2 fixation and transpiration. Blue-light perception by phototropins (phot1, phot2) activates the plasma membrane H(+)-ATPase, causing stomata to open. Here we describe a regulator that connects these components, a Ser/Thr protein kinase, BLUS1 (BLUE LIGHT SIGNALING1), which mediates a primary step for phototropin signalling in guard cells.

View Article and Find Full Text PDF

Stomata open in response to light and close after exposure to abscisic acid (ABA). They regulate gas exchange between plants and the atmosphere, enabling plants to adapt to changing environmental conditions. ABA binding to receptors initiates a signaling cascade that involves protein phosphorylation.

View Article and Find Full Text PDF

Phototropins (phot1 and phot2), blue light-receptor protein kinases in plants, mediate stomatal opening by activating the plasma membrane H(+)-ATPase in guard cells, but the signaling from phototropins to the H(+)-ATPase remains unknown. A recent study concluded that ROOT PHOTOTROPISM2 (RPT2) is involved in the primary step of this process. However, this conclusion is based solely on the determination of stomatal apertures in the epidermis.

View Article and Find Full Text PDF

Phototropism allows plants to redirect their growth towards the light to optimize photosynthesis under reduced light conditions. Phototropin 1 (phot1) is the primary low blue light-sensing receptor triggering phototropism in Arabidopsis. Light-induced autophosphorylation of phot1, an AGC-class protein kinase, constitutes an essential step for phototropism.

View Article and Find Full Text PDF