Publications by authors named "Ken-ichiro Matsunaga"

XenoAptamers are DNA fragments containing additional letters (unnatural bases, UBs) that bind specifically to their target proteins with high affinities (sub-nanomolar values). One of the UBs is the highly hydrophobic 7-(2-thienyl)imidazo[4,5-]pyridine (Ds), which significantly increases XenoAptamers' affinities to targets. Originally, Ds was developed as a third base pair with a complementary UB, 2-nitro-4-propynylpyrrole (Px), for replication, and thus it can be used for aptamer generation by an evolutional engineering method involving PCR amplification.

View Article and Find Full Text PDF

Serologic tests to detect specific IgGs to antigens related to viral infections are urgently needed for diagnostics and therapeutics. We present a diagnostic method for serotype-specific IgG identification of dengue infection by a competitive enzyme-linked immunosorbent assay (ELISA), using high-affinity unnatural-base-containing DNA (UB-DNA) aptamers that recognize the four categorized serotypes. Using UB-DNA aptamers specific to each serotype of dengue NS1 proteins (DEN-NS1), we developed our aptamer-antibody sandwich ELISA for dengue diagnostics.

View Article and Find Full Text PDF

Genetic alphabet expansion of DNA by introducing unnatural bases (UBs), as a fifth letter, dramatically augments the affinities of DNA aptamers that bind to target proteins. To determine whether UB-containing DNA (UB-DNA) aptamers obtained by affinity selection could spontaneously achieve high specificity, we have generated a series of UB-DNA aptamers (KD: 27-182 pM) targeting each of four dengue non-structural protein 1 (DEN-NS1) serotypes. The specificity of each aptamer is remarkably high, and the aptamers can recognize the subtle variants of DEN-NS1 with at least 96.

View Article and Find Full Text PDF

Background: Intermediate Filaments (IFs) are major constituents of the cytoskeletal systems in animal cells.

Objective: To gain insights into the structure-function relationship of invertebrate cytoplasmic IF proteins, we characterized an IF protein from the platyhelminth, Dugesia japonica, termed Dif-1.

Methods: cDNA cloning, in situ hybridization, immunohistochemical analysis, and IF assembly experiments in vitro using recombinant Dif-1, were performed for protein characterization.

View Article and Find Full Text PDF

The creation of unnatural base pairs (UBPs) has rapidly advanced the genetic alphabet expansion technology of DNA, requiring a new sequencing method for UB-containing DNAs with five or more letters. The hydrophobic UBP, Ds-Px, exhibits high fidelity in PCR and has been applied to DNA aptamer generation involving Ds as a fifth base. Here, we present a sequencing method for Ds-containing DNAs, in which Ds bases are replaced with natural bases by PCR using intermediate UB substrates (replacement PCR) for conventional deep sequencing.

View Article and Find Full Text PDF

A novel technology, genetic alphabet expansion, has rapidly advanced through the successful creation of unnatural base pairs that function as a third base pair in replication. Recently, genetic alphabet expansion has been applied to some practical areas. Among them, the application to DNA aptamer generation is a good example of the broad utility of this technology.

View Article and Find Full Text PDF

The novel evolutionary engineering method ExSELEX (genetic alphabet expansion for systematic evolution of ligands by exponential enrichment) provides high-affinity DNA aptamers that specifically bind to target molecules, by introducing an artificial hydrophobic base analogue as a fifth component into DNA aptamers. Here, we present a newer version of ExSELEX, using a library with completely randomized sequences consisting of five components: four natural bases and one unnatural hydrophobic base, 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds). In contrast to the limited number of Ds-containing sequence combinations in our previous library, the increased complexity of the new randomized library could improve the success rates of high-affinity aptamer generation.

View Article and Find Full Text PDF

We present a remodeling method for high-affinity unnatural-base DNA aptamers to augment their thermal stability and nuclease resistance, for use as drug candidates targeting specific proteins. Introducing a unique mini-hairpin DNA provides robust stability to unnatural-base DNA aptamers generated by SELEX using genetic alphabet expansion, without reducing their high affinity. By this method, >80% of the remodeled DNA aptamer targeting interferon-γ (KD of 33 pM) survived in human serum at 37 °C after 3 days under our experimental conditions, and sustainably inhibited the biological activity of interferon-γ.

View Article and Find Full Text PDF

Genetic alphabet expansion of DNA using unnatural base pair systems is expected to provide a wide variety of novel tools and methods. Recent rapid progress in this area has enabled the creation of several types of unnatural base pairs that function as a third base pair in polymerase reactions. Presently, a major topic is whether the genetic alphabet expansion system actually increases nucleic acid functionalities.

View Article and Find Full Text PDF

DNA aptamers produced with natural or modified natural nucleotides often lack the desired binding affinity and specificity to target proteins. Here we describe a method for selecting DNA aptamers containing the four natural nucleotides and an unnatural nucleotide with the hydrophobic base 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds). We incorporated up to three Ds nucleotides in a random sequence library, which is expected to increase the chemical and structural diversity of the DNA molecules.

View Article and Find Full Text PDF

Bacillus subtilis possesses two glutamate racemase isozymes, RacE and YrpC. For the first time, we succeeded in constructing glutamate racemase-gene disruptants of B. subtilis.

View Article and Find Full Text PDF