We investigated the single particle kinetics of the molecular release processes from two types of microcapsules used as drug delivery systems (DDS): biodegradable poly(lactic--glycolic) acid (PLGA) and a light-triggered-degradable liposome encapsulating gold nanospheres (liposome-GNP). To optimize the design of DDS capsules, it is highly desirable to develop a method for real-time monitoring of the release process. Using a combination of optical tweezers and confocal fluorescence microspectroscopy we successfully analyzed a single optically trapped PLGA particle and liposome-GNPs in solution.
View Article and Find Full Text PDFConfining molecules and ions at a specific position in a solution enables the control of chemical reactions and analysis of tiny amounts of substances. Here, we demonstrate local condensation of a temperature responsive ionic liquid using optical tweezers. Two kinds of microdroplets are prepared through phase separation or nanocluster formation under irradiation of a near-infrared laser beam.
View Article and Find Full Text PDFMany chemical and biological processes involve phase separation; however, controlling this is challenging. Here, we demonstrate local phase separation using optical tweezers in a thermo-responsive ionic liquid/water solution. Upon near-infrared laser irradiation, a single droplet is formed at the focal spot.
View Article and Find Full Text PDFMembrane fusion (MF) is one of the most important and ubiquitous processes in living organisms. In this study, we developed a novel method for MF of liposomes. Our method is based on laser-induced bubble generation on gold surfaces (a plasmonic nanostructure or a flat film).
View Article and Find Full Text PDFThe ability to modulate, tune, and control fluorescence colour has attracted much attention in photonics-related research fields. Thus far, it has been impossible to achieve fluorescence colour control (FCC) for material with a fixed structure, size, surrounding medium, and concentration. Here, we propose a novel approach to FCC using optical tweezers.
View Article and Find Full Text PDFAn optical vortex possesses a ring-shaped spatial profile and orbital angular momentum (OAM) owing to its helical wavefront. This form of structured light has garnered significant attention in recent years, and it has enabled new investigations in fundamental physics and applications. One such exciting application is laser-based material transfer for nano-/micro-fabrication.
View Article and Find Full Text PDFOptical tweezers enable the manipulation of micro- and nanodielectric particles through entrapment using a tightly focused laser. Generally, optical trapping of submicron size particles requires high-intensity light in the order of MW/cm. Here, we demonstrate a technique of stable optical trapping of submicron polymeric beads on nanostructured titanium surfaces (black-Ti) without the use of lasers.
View Article and Find Full Text PDFWhen an intense 1,064-nm continuous-wave laser is tightly focused at solution surfaces, it exerts an optical force on molecules, polymers, and nanoparticles (NPs). Initially, molecules and NPs are gathered into a single assembly inside the focus, and the laser is scattered and propagated through the assembly. The expanded laser further traps them at the edge of the assembly, producing a single assembly much larger than the focus along the surface.
View Article and Find Full Text PDFWe demonstrated the optical trapping-induced formation of a single large disc-like assembly (∼50 μm in diameter) of polystyrene (PS) nanoparticles (NPs) (100 nm in diameter) at a solution surface. Different from the conventional trapping behavior in solution, the assembly grows from the focus to the outside along the surface and contains needle structures expanding radially in all directions. Upon switching off the trapping laser, the assembly disperses and needle structures disappear, while the highly concentrated domain of the NPs is left for a while.
View Article and Find Full Text PDFRepeated absorption of emitted photons, also called photon recycling, in large crystals and thick films of perovskites leads to delayed photoluminescence (PL) and decrease of PL intensity. The role of distinct band gaps, which act as donors and acceptors of energy, and nonradiative energy transfer on such delayed, low intensity emission is yet to be rationalized. Here we report delayed emission by nonradiative energy transfer across a distribution of energy states in close-packed crystallites of cesium lead bromide CsPbBr , formamidinium lead bromide FAPbBr , or the mixed halide FAPb(BrI) perovskite synthesized in the form of thick pellets by the piezochemical method.
View Article and Find Full Text PDFNanocrystals of formamidinium lead bromide perovskite (FAPbBr3) self-assemble into clusters in powder and film samples and provide a prolonged photoluminescence lifetime, which is attributed to the diffusion of charge carriers through interparticle states formed among nanocrystals. Interestingly, the photoluminescence lifetime decreases and the emission intensity increases for the clusters, which is with the increase in the intensity of excitation light. By doping the nanocrystal clusters with C60, we successfully harvested the photogenerated charge carriers.
View Article and Find Full Text PDFSemiconductor quantum dots with stable photoluminescence are necessary for next generation optoelectronic and photovoltaic devices. Photoluminescence intensity fluctuations of cadmium and lead chalcogenide quantum dots have been extensively investigated since the first observation of blinking in CdSe nanocrystals in 1996. In a quantum dot, blinking originates from stochastic photocharging, nonradiative Auger recombination, and delayed neutralization.
View Article and Find Full Text PDFSingle crystals of organolead halide perovskites attract much attention to electrooptical and photovoltaic applications. They are usually prepared in precursor solutions incubated at controlled temperatures or under optimized vapor atmosphere conditions, and thus, multiple perovskite crystals are nucleated all over the solution. Multiple nucleation of crystals prevents efficient use of precursors in the preferential growth of large single crystals.
View Article and Find Full Text PDFThe broad absorption of light in the UV-Vis-NIR region and the size-based tunable photoluminescence color of semiconductor quantum dots make these tiny crystals one of the most attractive antennae in solar cells and phosphors in electrooptical devices. One of the primary requirements for such real-world applications of quantum dots is their stable and uniform distribution in optically transparent matrices. In this work, we prepare transparent thin films of polymer-quantum dot conjugates, where CdSe/ZnS quantum dots are uniformly distributed at high densities in a chitosan-polystyrene copolymer (CS-g-PS) matrix.
View Article and Find Full Text PDFConfining protein crystallization to a millimetre size was achieved within 0.5 h after stopping 1 h intense trapping laser irradiation, which shows excellent performance in spatial and temporal controllability compared to spontaneous nucleation. A continuous-wave near-infrared laser beam is tightly focused into a glass/solution interfacial layer of a supersaturated buffer solution of hen egg-white lysozyme (HEWL).
View Article and Find Full Text PDFFemtosecond (fs)-laser-induced crystallization as a novel crystallization technique was proposed for the first time by our group, where the crystallization time can be significantly shortened under fs laser irradiation. Similarly, we have further extended our investigation to amyloid fibril formation, also known as a nucleation-dependence process. Here we demonstrate that the necessary time for amyloid fibril formation can be significantly shortened by fs laser irradiation, leading to favorable enhancement.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2017
Protein amyloids have received much attention owing to their correlation with serious diseases and to their promising mechanical and optical properties as future materials. Amyloid formation has been conducted by tuning temperature and chemical conditions, so that its nucleation and the following growth are analyzed as ensemble dynamics. A single spherical assembly of amyloid fibrils of cytochrome c domain-swapped dimer was successfully generated upon laser trapping.
View Article and Find Full Text PDFLaser trapping in chemistry covers various studies ranging from single molecules, nanoparticles, and quantum dots to crystallization and liquid-liquid phase separation of amino acids. In this work, a supramolecular assembly of azobenzene-based biscalix[4]arene is generated in ethyl acetate using laser trapping; its nucleation and growth are elucidated. No trapping behavior was observed when a 1064 nm laser beam was focused inside of the solution; however, interesting assembling phenomena were induced when it was shined at the air/solution interface.
View Article and Find Full Text PDFAssembling dynamics of polystyrene nanoparticles by optical trapping is studied with utilizing transmission/reflection microscopy and reflection microspectroscopy. A single nanoparticle assembly with periodic structure is formed upon the focused laser irradiation at solution surface layer and continuously grows up to a steady state within few minutes. By controlling nanoparticle and salt concentrations in the colloidal solution, the assembling behavior is obviously changed.
View Article and Find Full Text PDFWe report optical trapping and assembling of colloidal particles at a glass/solution interface with a tightly focused laser beam of high intensity. It is generally believed that the particles are gathered only in an irradiated area where optical force is exerted on the particles by laser beam. Here we demonstrate that, the propagation of trapping laser from the focus to the outside of the formed assembly leads to expansion of the assembly much larger than the irradiated area with sticking out rows of linearly aligned particles like horns.
View Article and Find Full Text PDFPhotochem Photobiol Sci
February 2014
We present the laser trapping-induced crystallization of L-phenylalanine through high-concentration domain formation in H2O and D2O solutions which is achieved by focusing a continuous-wave (CW) near-infrared laser beam at the solution surface. Upon laser irradiation into the H2O solution, laser trapping of the liquid-like clusters increases the local concentration, accompanying laser heating, and a single plate-like crystal is eventually prepared at the focal spot. On the other hand, in the D2O solution, a lot of the monohydrate needle-like crystals are observed, not at the focal spot where the concentration is high enough to trigger crystal nucleation, but in the 0.
View Article and Find Full Text PDFWe present laser trapping behavior of l-phenylalanine (l-Phe) at a surface of its unsaturated aqueous solution by a focused continuous-wave (CW) near-infrared (NIR) laser beam. Upon the irradiation into the solution surface, laser trapping of the liquid-like clusters is induced concurrently with local laser heating, forming an anhydrous plate-like crystal at the focal spot. The following laser irradiation into a central part of the plate-like crystal leads to laser trapping at the crystal surface not only for l-Phe molecules/clusters but also for polystyrene (PS) particles.
View Article and Find Full Text PDFLaser trapping has served as a useful tool in physics and biology, but, before our work, chemists had not paid much attention to this technique because molecules are too small to be trapped in solution at room temperature. In late 1980s, we demonstrated laser trapping of micrometer-sized particles, developed various methodologies for their manipulation, ablation, and patterning in solution, and elucidated their dynamics and mechanism. In the 1990s, we started laser trapping studies on polymers, micelles, dendrimers, and gold, as well as polymer nanoparticles.
View Article and Find Full Text PDF