Publications by authors named "Ken-ichi Sudo"

Covalent binding of reactive metabolites to cytochrome P450s (P450s) often causes their mechanism-based inactivation (MBI), resulting in drug-drug interactions or toxicity. The detection and identification of the P450 sites to which reactive metabolites bind would elucidate MBI mechanisms. We describe a proteomic approach using nano-LC/linear ion trap-Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to characterize the binding of a reactive metabolite of raloxifene, which is a known P450 3A4 inhibitor, to the P450 3A4 isozyme.

View Article and Find Full Text PDF

The CYP3A family is a major drug metabolism enzyme in humans. Metabolism-based inhibition of CYP3A might cause clinically significant drug-drug interactions (DDIs). To assess the risk of DDIs caused by metabolism-based inhibition (MBI) of CYP3A, we established an automated single time- and concentration-dependent inhibition assay.

View Article and Find Full Text PDF

Human cytochrome P450 (P450) isozyme(s) responsible for metabolism of the calmodulin antagonist 3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate (DY-9760e) and kinetic profiles for formation of its six primary metabolites [M3, M5, M6, M7, M8, and DY-9836 (3-[2-[4-(3-chloro-2-methylphenyl)piperazinyl]ethyl]-5,6-dimethoxyindazole)] were identified using human liver microsomes and recombinant P450 enzymes. In vitro experiments, including an immunoinhibition study, correlation analysis, and reactions with recombinant P450 enzymes, revealed that CYP3A4 is the primary P450 isozyme responsible for the formation of the DY-9760e metabolites, except for M5, which is metabolized by CYP2C9.

View Article and Find Full Text PDF

DY-9760e (3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate, CAS 162496-41-5) is a novel calmodulin antagonist that is being evaluated for the treatment of ischemia. The objective of this study was to characterize the pharmacokinetics and disposition of DY-9760e in rats and monkeys.

View Article and Find Full Text PDF