Osteoclastogenesis is a highly regulated process governed by diverse classes of regulators. Among them, nuclear factor of activated T-cells calcineurin-dependent 1 (NFATc1) is the primary osteoclastogenic transcription factor, and its expression is transcriptionally induced during early osteoclastogenesis by receptor activation of nuclear factor κB ligand (RANKL), an osteoclastogenic cytokine. Here, we report the novel enzymatic function of JMJD5, which regulates NFATc1 protein stability.
View Article and Find Full Text PDFCovalent modifications of histones play an important role in chromatin architecture and dynamics. In particular, histone lysine methylation is important for transcriptional control during diverse biological processes. The nuclear protein Jmjd5 (also called Kdm8) is a histone lysine demethylase that contains a JmjC domain in the C-terminal region.
View Article and Find Full Text PDFIdentification of genes involved in in vitro differentiation induction of embryonic stem cells (ESCs) into hematopoietic stem cells (HSCs) has been challenged during last decade. To date, a homeobox transcription factor Hoxb4 has been only demonstrated to possess such an effect in mice. Here, we show that HSC-like cells were efficiently induced from mouse ESCs by enforced expression of Lhx2, a LIM-homeobox transcription factor.
View Article and Find Full Text PDFOncostatin M (OSM) has been implicated in immune regulation, though its precise role remains elusive. Here we show that OSM plays a crucial role in the prevention of autoimmune diseases. OSM-deficient mice showed normal development of T cells, B cells and DC; however, their thymus showed hypoplasia and altered medullary structure.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2008
The differentiation of endothelial cells is tightly connected with the formation of blood vessels during vertebrate development. The signaling pathways mediated by vascular endothelial growth factor (vegf) are required for these processes. Here we show that a proto-oncogene, meis1, plays important roles in the vascular development in zebrafish.
View Article and Find Full Text PDFBone marrow (BM) functions as the primary hematopoietic tissue throughout adult life by providing a microenvironment for the proliferation, differentiation, and retention of hematopoietic stem cells and progenitors. We describe novel roles for oncostatin M (OSM) in the BM hematopoietic microenvironment. Hematopoietic progenitor activity in OSM-deficient mice was reduced in BM but elevated in the spleen and peripheral blood.
View Article and Find Full Text PDFRetroviral insertional mutagenesis preferentially identifies oncogenes rather than tumor suppressor (TS) genes, presumably because a single retroviral-induced mutation is sufficient to activate an oncogene and initiate a tumor, whereas two mutations are needed to inactivate a TS gene. Here we show that TS genes can be identified by insertional mutagenesis when the screens are performed in Blm-deficient backgrounds. Blm-deficient mice, like Bloom syndrome patients, have increased frequencies of mitotic recombination owing to a mutation in the RecQ protein-like-3 helicase gene.
View Article and Find Full Text PDFOncostatin M (OSM) is a member of the interleukin-6 family of cytokines, and we have reported previously that the murine OSM receptor beta subunit (OSMR) was expressed in some neurons in the adult trigeminal and dorsal root ganglia (DRGs) and in the perineonatal hypoglossal nucleus. In the present study, we investigated the development of OSMR-positive neurons of DRGs in OSM-deficient mice. In situ hybridization revealed that OSMR-positive neurons in DRGs began to appear at postnatal day 0 (P0) and reached the adult level at P14.
View Article and Find Full Text PDFDefinitive hematopoietic stem cells arise in the aorta-gonad-mesonephros (AGM) region from hemangioblasts, common precursors for hematopoietic and endothelial cells. Previously, we showed that multipotential hematopoietic progenitors and endothelial cells were massively produced in primary culture of the AGM region in the presence of oncostatin M. Here we describe a role for macrophage-colony-stimulating factor (M-CSF) in the development of hematopoietic and endothelial cells in AGM culture.
View Article and Find Full Text PDF