Publications by authors named "Ken-ichi Kasuya"

We prepared biocompatible elastic fibers with high porosity and high tensile strength from poly[()-3-hydroxybutyrate--4-hydroxybutyrate], which is a microbial polyester that can be produced from renewable carbon resources by isothermal crystallization. It was possible to control the pore size by adjusting the isothermal crystallization time. Most of the pores were approximately less than 10 μm in diameter, did not penetrate, and were distributed discontinuously throughout the fibers.

View Article and Find Full Text PDF
Article Synopsis
  • Biodegradable plastics are useful for single-use applications but are limited by high production costs and fewer varieties compared to traditional plastics.
  • The study introduces a new polymer called poly(ketone/ester), made from affordable and accessible propylene and carbon monoxide, which can also come from renewable biomass sources.
  • The synthesis process involves a highly selective atom insertion reaction, achieving up to 89% selectivity for inserting atoms into the polymer's main chain without breaking it.
View Article and Find Full Text PDF

Microbeads find widespread usage in personal care items and cosmetics, serving as exfoliants or scrubbing agents. Their micro-scale size poses challenges in effective drainage capture and given their origin from non-biodegradable oil-based plastics, this contributes substantially to marine pollution. In this study, microbeads were prepared by a simple yet scalable melt homogenization method using four types of polyhydroxyalkanoates (PHA), namely poly[(R)-3-hydroxybutyrate] (P(3HB)), poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] (P(3HB-co-3HV)), poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] (P(3HB-co-3HHx)) and poly[(R)-3-hydroxybutyrate-co-(R)-4-hydroxyvalerate] (P(3HB-co-4HB)).

View Article and Find Full Text PDF
Article Synopsis
  • Microbes are capable of breaking down biodegradable plastics in various environments, but their effectiveness in the deep sea was previously uncertain.
  • Research showed that certain biodegradable plastics were decomposed by microorganisms at deep-sea locations, although the rate of degradation decreased with increasing water depth.
  • Analysis revealed that specific microbes with genes for degrading plastic were present, indicating that while degradation occurs in the deep sea, it's significantly less efficient compared to coastal areas.
View Article and Find Full Text PDF

Two of the most fundamental principles for the development of next-generation polymers are production from renewable biomass and well-designed recyclability. Bifuran derivatives represent promising building blocks for functional polymers on account of their high rigidity, strong interchain interactions, and extended π-conjugation. In this study, a polycarbosilane containing a bifuran-based repeat unit was prepared via the hydrosilylation of dihydrosilylbifuran and 1,5-hexadiene.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers isolated a strain called Sphingobium OW59, which shows strong activity in breaking down complex plant materials like hemicelluloses and can grow on various natural aromatic compounds and sugars.
  • * The study identified a specific gene in OW59 that encodes an enzyme (tannase-family α/β hydrolase) involved in this biodegradation process, contributing to a better understanding of how plant biomass is decomposed in water.
View Article and Find Full Text PDF

Next generation polymers needs to be produced from renewable sources and to be converted into inorganic compounds in the natural environment at the end of life. Recombinant structural protein is a promising alternative to conventional engineering plastics due to its good thermal and mechanical properties, its production from biomass, and its potential for biodegradability. Herein, we measured the thermal and mechanical properties of the recombinant structural protein BP1 and evaluated its biodegradability.

View Article and Find Full Text PDF

In this study, bifurfural, an inedible biobased chemical and a second-generation biomass, was polymerized with several diamines using an environmentally benign process, and the chemical structures of the resulting poly(Schiff base)s were analyzed. Because furan rings, which are only produced from biomass and not from fossil resources, endow polymers with unique properties that include high rigidity and expanded π-conjugation, bifurfural, which contains two furan rings, is of significant interest as a biobased building block. H NMR, IR, and matrix assisted laser desorption ionization-time of flight mass spectra of the poly(Schiff base)s reveal that they are composed of mixtures of linear and cyclic structures.

View Article and Find Full Text PDF

Exploiting biomass as an alternative to petrochemicals for the production of commodity plastics is vitally important if we are to become a more sustainable society. Here, we report a synthetic route for the production of terephthalic acid (TPA), the monomer of the widely used thermoplastic polymer poly(ethylene terephthalate) (PET), from the biomass-derived starting material furfural. Biobased furfural was oxidised and dehydrated to give maleic anhydride, which was further reacted with biobased furan to give its Diels-Alder (DA) adduct.

View Article and Find Full Text PDF

The crystalline structure dependence of enzymatic degradation behavior was investigated for the polymorphic poly(3-hydroxypropionate) (P3HP), which has a basic backbone chemical structure of bacterial poly(3-hydroxyalkanoate)s (P3HAs). The P3HP films consisting of the beta-, gamma-, and/or delta-form crystal were cast or melt-crystallized as reported previously (Macromolecules 2005, 38, 6455; Macromolecules 2006, 39, 194-203) by controlling the molecular weight, crystallization temperature, and/or temperature of the melt. Their thermal properties, crystalline structures, morphologies, and (13)C solid spin-lattice relaxation dynamics were characterized by the differential scanning calorimetry, the wide-angle X-ray diffraction, the small-angle X-ray scattering (SAXS), and the (13)C solid-state NMR spectra (SNMR), respectively.

View Article and Find Full Text PDF

Fiber morphology and crystalline structure of poly[(R)-3-hydroxybutyrate] (P(3HB)) and stereocomplexed poly(lactide) (PLA) nanofibers were investigated by using scanning and transmission electron microscopies and X-ray and electron diffractions. In the P(3HB) nanofibers spun from less than 1 wt% 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) solution, planar zigzag conformation (beta-form) as well as 2(1) helix conformation (alpha-form) structure was formed. Based on the electron diffraction measurement of single P(3HB) nanofiber, it was revealed that the molecular chains of P(3HB) align parallel to the fiber direction.

View Article and Find Full Text PDF

Reaction processes of poly[(R)-3-hydroxybutyric acid] (P(3HB)) with two types of poly(hydroxybutyric acid) (PHB) depolymerases secreted from Ralstonia pickettii T1 and Penicillium funiculosum were characterized by means of atomic force microscopy (AFM) and quartz crystal microbalance (QCM). The PHB depolymerase from R. pickettii T1 consists of catalytic, linker, and substrate-binding domains, whereas the one from P.

View Article and Find Full Text PDF

Polyhydroxybutyrate is a microbial polyester that can be produced from renewable resources, and is degraded by the enzyme polyhydroxybutyrate depolymerase. The crystal structures of polyhydroxybutyrate depolymerase from Penicillium funiculosum and its S39 A mutant complexed with the methyl ester of a trimer substrate of (R)-3-hydroxybutyrate have been determined at resolutions of 1.71 A and 1.

View Article and Find Full Text PDF

Solid-state structures and enzymatic degradability have been investigated for cocrystallized blends between poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [PHBV] and poly(3-hydroxybutyrate-co-3-hydroxypropionate) [PHBP]. From wide-angle X-ray diffraction patterns, small-angle X-ray scattering data, and the comparison of the enzymatic degradability of these blends, the solid-state structures of PHBV/PHBP blend samples, in which the PHBV component has higher isothermal crystal growth rate (G) value than the PHBP one, might be similar to those of the component PHBVs; while those of the PHBP/PHBV blend samples, in which PHBP component has higher G value, were similar to the component PHBPs. Normalized one-dimensional correlation functions gamma(x) of PHBV/PHBP binary blends crystallized at 90 degrees C.

View Article and Find Full Text PDF

A DNA fragment carrying the gene encoding poly(3-hydroxybutyrate) (P(3HB)) depolymerase was cloned from the genomic DNA of Marinobacter sp. DNA sequencing analysis revealed that the Marinobacter sp. P(3HB) depolymerase gene is composed of 1734bp and encodes 578 amino acids with a molecular mass of 61,757Da.

View Article and Find Full Text PDF

The change in the surface structure of poly[(R)-3-hydroxybutyrate] [PHB] films upon the enzymatic hydrolysis was analyzed by attenuated total reflection infrared [ATR/IR] spectrometry. As enzymes, PHB depolymerases isolated from Ralstonia pickettii T1 and Pseudomonas stutzeri were used. By curve decomposition of the carbonyl stretching band of ATR/IR spectra, the change in the surface crystallinity of PHB films by exposure to buffer containing 0, 1, and 4 microg of PHB depolymerases was estimated.

View Article and Find Full Text PDF

The enzymatic degradability of chemosynthesized atactic poly([R,S]-3-hydroxybutyrate) [a-P(3HB)] by two types of extracellular poly(3-hydroxyalkanoate) (PHA) depolymerases purified from Ralstonia pickettii T1 (PhaZ(ral)) and Acidovorax Sp. TP4 (PhaZ(aci)), defined respectively as PHA depolymerase types I and II according to the position of the lipase box in the catalytic domain, were studied. The enzymatic degradation of a-P(3HB) by PhaZ(aci) depolymerase was confirmed from the results of weight loss and the scanning electron micrographs.

View Article and Find Full Text PDF

Enzymatic degradability has been investigated for a series of bacterial poly(3-hydroxybutyrate-co-3-hydroxypropionate)s (P(3HB-co-3HP)s) with 3-hydroxypropionate (3HP) unit contents from 11 to 86 mol % as well as poly(3-hydroxybutyrate) (P(3HB)) and chemosynthesized poly(3-hydroxypropionate) (P(3HP)). The behavior of degradation by two types of extracellular poly(3-hydroxyalkanoate) (PHA) depolymerases purified from Ralstonia pikettii T1 and Acidovorax Sp. TP4, defined respectively as PHA depolymerase types I and II according to the position of the lipase box in the catalytic domain, were compared in relation to the thermal properties and crystalline structures of the PHA samples elucidated by differential scanning calorimetry and wide-angle X-ray diffraction.

View Article and Find Full Text PDF