Publications by authors named "Ken-ichi Amano"

Interaction between two bodies in a liquid metal is an important topic for development of metallic products with high performance. We conducted atomic force microscopy measurements and achieved the interaction between the substrate and the probe in liquid Ga of an opaque and highly viscous liquid. The interaction cannot be accessed with the normal atomic force microscopy, electron microscopy, and beam reflectometry.

View Article and Find Full Text PDF

It is important to understand the mechanism of colloidal particle assembly near a substrate for development of drug delivery systems, micro-/nanorobots, batteries, heterogeneous catalysts, paints, and cosmetics. Understanding the mechanism is also important for crystallization of the colloidal particles and proteins. In this study, we calculated the physical adsorption of colloidal particles on a flat wall mainly using the integral equation theory, wherein small and large colloidal particles were employed.

View Article and Find Full Text PDF

Atomic force microscopy can observe structures of liquids (solvents) on solid surfaces as oscillating force curves. The oscillation originates from the solvation force, which is affected by the interaction between the probe, substrate, and solvents. To investigate the effects of the interactions on the force curve, we calculated the force curves by integral equation theory with various probe and substrate conditions.

View Article and Find Full Text PDF

The ion enrichment behavior due to surface-induced phase separation and the concomitant phase transition of electrolyte solutions between a liquid and a solid confined within nanopores of porous silicon is examined using concentrated aqueous solutions. We performed open-circuit potential measurements and differential scanning calorimetry (DSC) while varying the concentration of aqueous tetraethylammonium chloride (TEACl) solution. Open-circuit potential measurements revealed that the local OH concentration within the nanopores increases as the bulk TEACl concentration increases.

View Article and Find Full Text PDF

Highly correlated positioning of ions underlies Coulomb interactions between ions and electrified interfaces within dense ionic fluids such as biological cells and ionic liquids. Recent work has shown that highly correlated ionic systems behave differently than dilute electrolyte solutions, and interest is focused upon characterizing the electrical and structural properties of the dense electrical double layers (EDLs) formed at internal interfaces. It has been a challenge for experiments to characterize the progressive development of the EDL on the nanoscale as the interfacial electric potential is varied over a range of positive and negative values.

View Article and Find Full Text PDF

A molecular dynamics simulation at the electrode interface of a quaternary ammonium ionic liquid, tributylmethylammonium bis(trifluoromethanesulfonyl)amide ([N][TFSA]), has been performed. Unlike the commonly used cations, such as 1-alkyl-3-methylimidazolium and 1,1-alkylmethylpyrrolidinium cations, N has multiple long-alkyl groups (three butyl groups). The behavior of ions at the electrode interface, especially these butyl groups, has been investigated.

View Article and Find Full Text PDF

Colloidal probe atomic force microscopy (CP-AFM) can be used for measuring force curves between the colloidal probe and the substrate in a colloidal suspension. In the experiment, an oscillatory force curve reflecting the layer structure of the colloidal particles on the substrate is usually obtained. However, the force curve is not equivalent to the interfacial structure of the colloidal particles.

View Article and Find Full Text PDF

Janus-type Au/polythiophene (PT) composites have been prepared by utilizing the liquid/liquid interface between water (W) and a hydrophobic ionic liquid (IL) as the redox reaction site. AuCl is reductively deposited, and terthiophene is oxidatively polymerized spacio-selectively at the IL|W interface, leading to the formation of the Au/PT composites. The composites are Janus-type Au-attached PT plates with two surface morphologies, flat surface and flowerlike surface at the W and IL sides of the plates at the IL|W interface, respectively.

View Article and Find Full Text PDF

An ionic liquid forms a characteristic solvation structure on a substrate. For example, when the surface of the substrate is negatively or positively charged, cation and anion layers are alternately aligned on the surface. Such a solvation structure is closely related to slow diffusion, high electric capacity, and chemical reactions at the interface.

View Article and Find Full Text PDF

Some colloidal suspensions contain two types of particles-small and large particles-to improve the lubricating ability, light absorptivity, and so forth. Structural and chemical analyses of such colloidal suspensions are often performed to understand their properties. In a structural analysis study, the observation of the number density distribution of small particles around a large particle (g) is difficult because these particles are randomly moving within the colloidal suspension by Brownian motion.

View Article and Find Full Text PDF

Correction for 'Number density distribution of solvent molecules on a substrate: a transform theory for atomic force microscopy' by Ken-ichi Amano et al., Phys. Chem.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) in liquids can measure a force curve between a probe and a buried substrate. The shape of the measured force curve is related to hydration structure on the substrate. However, until now, there has been no practical theory that can transform the force curve into the hydration structure, because treatment of the liquid confined between the probe and the substrate is a difficult problem.

View Article and Find Full Text PDF

With the development of atomic force microscopy (AFM), it is now possible to detect the buried liquid-solid interfacial structure in three dimensions at the atomic scale. One of the model surfaces used for AFM is the muscovite surface because it is atomically flat after cleavage along the basal plane. Although it is considered that force profiles obtained by AFM reflect the interfacial structures (e.

View Article and Find Full Text PDF

Hydration plays important roles in various solid-liquid interfacial phenomena. Very recently, three-dimensional scanning force microscopy (3D-SFM) has been proposed as a tool to visualise solvated surfaces and their hydration structures with lateral and vertical (sub) molecular resolution. However, the relationship between the 3D force map obtained and the equilibrium water density, ρ(r), distribution above the surface remains an open question.

View Article and Find Full Text PDF

Insertion of a solute into a vessel comprising biopolymers is a fundamental function in a biological system. The entropy originating from the translational displacement of solvent particles plays an essential role in the insertion. Here we study the dynamics of entropic insertion of a large spherical solute into a cylindrical vessel.

View Article and Find Full Text PDF

The density of a liquid is not uniform when placed on a solid. The structured liquid pushes or pulls a probe employed in atomic force microscopy, as demonstrated in a number of experimental studies. In the present study, the relation between the force on a probe and the local density of a liquid is derived based on the statistical mechanics of simple liquids.

View Article and Find Full Text PDF

Insertion and release of a solute into and from a vessel comprising biopolymers is a fundamental function in a biological system. A typical example is found in a multidrug efflux transporter. "Multidrug efflux" signifies that solutes such as drug molecules with diverse properties can be handled.

View Article and Find Full Text PDF

Campylobacter jejuni is the most common bacterium that causes diarrhea worldwide, and chickens are considered the main reservoir of this pathogen. This study investigated the effects of serial truncation of lipooligosaccharide (LOS), a major component of the outer membrane of C. jejuni, on its bile resistance and intestinal colonization ability in chickens.

View Article and Find Full Text PDF

We propose two antigenic types of Helicobacter pylori lipopolysaccharides (LPS): highly antigenic epitope-carrying LPS (HA-LPS) and weakly antigenic epitope-carrying LPS (WA-LPS) based on human serum reactivity. Strains carrying WA-LPS are highly prevalent in isolates from gastric cancer patients. WA-LPS exhibits more potent biological activities compared to HA-LPS, namely, upregulation of Toll-like receptor 4 (TLR4) expression and induction of enhanced epithelial cell proliferation.

View Article and Find Full Text PDF

We compared the serological reactivity of lipopolysaccharides (LPS) isolated from Japanese and Western strains of Helicobacter pylori against anti-Lewis antigen monoclonal antibodies and H. pylori-positive Japanese sera. The two LPS from Western strains (26695 and O:2) did not react with any sera from Japanese patients, while all LPS from Japanese strains and the Sydney strain reacted with these sera.

View Article and Find Full Text PDF

We report a new progress in elucidating the mechanism of the unidirectional movement of a linear-motor protein (e.g., myosin) along a filament (e.

View Article and Find Full Text PDF

Yeast frataxin is a protein exhibiting cold denaturation at an exceptionally high temperature (280 K). We show that the microscopic mechanism of cold denaturation, which has recently been suggested by us [Yoshidome and Kinoshita, Phys. Rev.

View Article and Find Full Text PDF