In transition metal dichalcogenides, valley depolarization through intervalley carrier scattering by zone-edge phonons is often unavoidable. Although valley depolarization processes related to various acoustic phonons have been suggested, their optical verification is still vague due to nearly degenerate phonon frequencies on acoustic phonon branches at zone-edge momentums. Here we report an unambiguous phonon momentum determination of the longitudinal acoustic (LA) phonons at the K point, which are responsible for the ultrafast valley depolarization in monolayer MoSe.
View Article and Find Full Text PDFIn their Correspondence, von Szentpály, Schwarz, Stoll, and Werner claim that the main conclusions of our Communication previously published in this journal are based on computational artifacts and oversimplified models. We clarify the justification of our simple one-electron model to describe one-electron physics, and refute their criticism based on what they call "computational artifacts." We remind that our main conclusion on the crucial role of qualitative changes in core electron wavefunctions is evidenced not only by wavefunction topologies the complainants cling to, but also by several other physical observables, which remain unrefuted.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2018
The similarities and differences between carbon and silicon have attracted the curiosity of chemists for centuries. Similarities and analogies can be found in their saturated compounds, but carbon exhibits a cornucopia of unsaturated compounds that silicon (and most other elements) cannot replicate. While this qualitative difference is empirically well known, quantum chemistry has previously only described quantitative differences related to orbital overlap, steric effects, or orbital energies.
View Article and Find Full Text PDFThe electronic states of individual clusters formed from Ti deposition on a TiO(2)(1 1 0)-1 × 1 surface were measured using scanning tunneling spectroscopy (STS). The results of scanning tunneling microscopy (STM) suggests that as the amount of deposited Ti increased, at a critical height of 1.4 nm, the cluster growth changes from vertical oxide formation to lateral growth.
View Article and Find Full Text PDFImproved control over the electromagnetic properties of metal nanostructures is indispensable for the development of next-generation integrated nanocircuits and plasmonic devices. The use of terahertz (THz)-field-induced nonlinearity is a promising approach to controlling local electromagnetic properties. Here, we demonstrate how intense THz electric fields can be used to modulate electron delocalization in percolated gold (Au) nanostructures on a picosecond time scale.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2012
The valence electronic states of thiophene (TP), 2-thiophenethiol (TT), 2,2'-bithiophene (BTP), and 2,2'-bithiophene-5-thiol (BTT) on Pt(111) were measured by ultraviolet photoemission spectroscopy (UPS) and metastable atom electron spectroscopy (MAES) to elucidate how the local electronic properties at the organic-metal interface are altered by the extent of π-conjugation and substituent effects. First-principles calculations using density functional theory (DFT) were used to assign the observed spectra. TP and BTP chemisorb weakly on Pt(111), whereas TT and BTT are strongly bound to Pt(111) through the S atom with the cleavage of the S-H bond, forming a thiolate.
View Article and Find Full Text PDFUltrafast dynamics of surface-enhanced Raman scattering (SERS) was investigated at cleaved graphite surfaces bearing deposited gold (Au) nanostructures (∼10 nm in diameter) by using sensitive pump-probe reflectivity spectroscopy with ultrashort (7.5 fs) laser pulses. We observed enhancement of phonon amplitudes (C═C stretching modes) in the femtosecond time domain, considered to be due to the enhanced electromagnetic (EM) field around the Au nanostructures.
View Article and Find Full Text PDF