Background: Muscle synergies are now widely discussed as a method for evaluating the existence of redundant neural networks that can be activated to enhance stroke rehabilitation. However, this approach was initially conceived to study muscle coordination during learned motions in healthy individuals. After brain damage, there are several neural adaptations that contribute to the recovery of motor strength, with muscle coordination being one of them.
View Article and Find Full Text PDFUnderstanding the complex neuromuscular strategies underlying behavioral adaptation in healthy individuals and motor recovery after brain damage is essential for gaining fundamental knowledge on the motor control system. Relying on the concept of muscle synergy, which indicates the number of coordinated muscles needed to accomplish specific movements, we investigated behavioral adaptation in nine healthy participants who were introduced to a familiar environment and unfamiliar environment. We then compared the resulting computed muscle synergies with those observed in 10 moderate-stroke survivors throughout an 11-week motor recovery period.
View Article and Find Full Text PDFMotilin is a 22-amino-acid gastrointestinal polypeptide that was first isolated from the porcine intestine. We identified that motilin receptor is highly expressed in GABAergic interneurons in the basolateral nucleus (BLA) of the amygdala, the structure of which is closely involved in assigning stress disorder and anxiety. However, little is known about the role of motilin in BLA neuronal circuits and the molecular mechanisms of stress-related anxiety.
View Article and Find Full Text PDFWe successfully discovered peptidomimetic motilin antagonists (17c and 17d) through the improvement of physicochemical properties of a tetrapeptide antagonist (2). Furthermore, with oral administration and based on motilin antagonistic activity, both compounds suppressed motilin-induced colonic and gastric motility in conscious dogs.
View Article and Find Full Text PDFThe pharmacological properties of MA-2029, a selective and competitive motilin receptor antagonist, were investigated in conscious dogs after oral administration. Gastrointestinal contractile activity was recorded by chronically implanted force transducers. The proximal gastric volume was measured with a barostat under constant pressure.
View Article and Find Full Text PDF1. The aim of the present study was to evaluate the effects of mitemcinal (GM-611), an orally active motilin receptor agonist, on delayed gastric emptying in a canine model of diabetic gastroparesis and to compare these effects with those of cisapride. 2.
View Article and Find Full Text PDFThe pharmacological properties of MA-2029, a novel motilin receptor antagonist, were investigated. In vitro, MA-2029 (1 to 30 nM) competitively inhibited motilin-induced contractions in isolated rabbit duodenal longitudinal muscle strips, with a pA2 value of 9.17+/-0.
View Article and Find Full Text PDF1. We examined effects of orally administered mitemcinal, an erythromycin-derived motilin agonist, on gastric emptying and antroduodenal motility in conscious normal dogs and conscious dogs with experimentally delayed gastric emptying. For comparison, we also examined the effects of orally administered cisapride.
View Article and Find Full Text PDFWe assessed and compared the effects of oral mitemcinal (an orally active, erythromycin-derived motilin-receptor agonist; Code name: GM-611), erythromycin, EM-574 and cisapride on gastric emptying in conscious Rhesus monkeys using the acetaminophen method. Mitemcinal and erythromycin induced significant, dose-dependent increases in indices of gastric emptying, but mitemcinal required a much lower dose for the same effect. Cisapride induced a bell-shaped dose response, and EM-574, a potent erythromycin derivative and originally developed as an enteric coated formulation, had little effect when it was given orally uncoated.
View Article and Find Full Text PDFNeither the presence of motilin receptors nor their action has been investigated in monkeys. The object of this study was to determine the effects of motilin and mitemcinal (GM-611), an erythromycin derivative, on the gastrointestinal tract in rhesus monkeys in vivo and in vitro. In in vivo investigations in conscious monkeys, both motilin and mitemcinal induced migrating motor complex-like contractions in the interdigestive state and also accelerated gastric emptying.
View Article and Find Full Text PDFThe effects of mitemcinal (GM-611) on the gastrointestinal contractile activity were investigated using chronically implanted force transducers in conscious dogs and were compared with the effects of porcine motilin (pMTL), EM-523 and EM-574. In the interdigestive state, intravenous and oral administration of mitemcinal, EM-523 and EM-574 induced the gastrointestinal contractile activity in a manner similar to pMTL. The contractile activity caused by mitemcinal was suppressed by continuous intravenous infusion of a motilin receptor antagonist.
View Article and Find Full Text PDFThe pharmacological properties of mitemcinal (GM-611), the first acid-resistant non-peptide motilin agonist, were investigated in the smooth muscle of the rabbit small intestine and compared with porcine motilin (pMTL), erythromycin A (EMA) and its derivatives (EM-523, EM-574 and ABT-229). Mitemcinal, pMTL, EMA, EM-523, EM-574 and ABT-229 produced concentration-dependent contractions with approximately the same maximum contractions in the isolated rabbit duodenum longitudinal strips. The contractile response to mitemcinal or pMTL was competitively inhibited by a selective motilin antagonist, GM-109.
View Article and Find Full Text PDF