Publications by authors named "Ken-Ichi Miyazono"

Proteases are enzymes that are not only essential for life but also industrially important. Understanding the substrate recognition mechanisms of proteases is important to enhance the use of proteases. The fungus Aspergillus produces a wide variety of proteases, including PEP, which is a prolyl endoprotease from A.

View Article and Find Full Text PDF

While most restriction enzymes catalyze the hydrolysis of phosphodiester bonds at specific nucleotide sequences in DNA, restriction enzymes of the HALFPIPE superfamily cleave N-glycosidic bonds, similar to DNA glycosylases. Apurinic/apyrimidinic (AP) sites generated by HALFPIPE superfamily proteins are cleaved by their inherent AP lyase activities, other AP endonuclease activities or heat-promoted β-elimination. Although the HALFPIPE superfamily protein R.

View Article and Find Full Text PDF

Transforming growth factor-β (TGF-β) proteins regulate multiple cellular functions, including cell proliferation, apoptosis, and extracellular matrix formation. The dysregulation of TGF-β signaling causes diseases such as cancer and fibrosis, and therefore, understanding the biochemical basis of TGF-β signal transduction is important for elucidating pathogenic mechanisms in these diseases. SMAD proteins are transcription factors that mediate TGF-β signaling-dependent gene expression.

View Article and Find Full Text PDF

R.PabI is a restriction DNA glycosylase that recognizes the sequence 5'-GTAC-3' and hydrolyses the N-glycosidic bond of adenine in the recognition sequence. R.

View Article and Find Full Text PDF

(S)-3-O-Geranylgeranylglyceryl phosphate synthase (GGGPS) catalyzes the initial ether-bond formation between sn-glycerol 1-phosphate (G1P) and geranylgeranyl pyrophosphate to synthesize (S)-3-O-geranylgeranylglyceryl phosphate in the production of an archaeal cell-membrane lipid molecule. Archaeal GGGPS proteins are divided into two groups (group I and group II). In this study, the crystal structure of the archaeal group II GGGPS from Thermoplasma acidophilum (TaGGGPS) was determined at 2.

View Article and Find Full Text PDF

Receptor-regulated SMAD (R-SMAD: SMAD1, SMAD2, SMAD3, SMAD5 and SMAD8) proteins are key transcription factors of the transforming growth factor-β (TGF-β) superfamily of cytokines. MAN1, an integral protein of the inner nuclear membrane, is a SMAD cofactor that terminates TGF-β superfamily signals. Heterozygous loss-of-function mutations in MAN1 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis.

View Article and Find Full Text PDF

Because base deaminations, which are promoted by high temperature, ionizing radiation, aerobic respiration and nitrosative stress, produce mutations during replication, deaminated bases must be repaired quickly to maintain genome integrity. Recently, we identified a novel lesion-specific endonuclease, PfuEndoQ, from Pyrococcus furiosus, and PfuEndoQ may be involved in the DNA repair pathway in Thermococcales of Archaea. PfuEndoQ recognizes a deaminated base and cleaves the phosphodiester bond 5' of the lesion site.

View Article and Find Full Text PDF

The transforming growth factor-β (TGF-β) superfamily of cytokines regulates various biological processes, including cell proliferation, immune responses, autophagy, and senescence. Dysregulation of TGF-β signaling causes various diseases, such as cancer and fibrosis. SMAD2 and SMAD3 are core transcription factors involved in TGF-β signaling, and they form heterotrimeric complexes with SMAD4 (SMAD2-SMAD2-SMAD4, SMAD3-SMAD3-SMAD4, and SMAD2-SMAD3-SMAD4) in response to TGF-β signaling.

View Article and Find Full Text PDF

Background: More than 7000 papers related to "protein refolding" have been published to date, with approximately 300 reports each year during the last decade. Whilst some of these papers provide experimental protocols for protein refolding, a survey in the structural life science communities showed a necessity for a comprehensive database for refolding techniques. We therefore have developed a new resource - "REFOLDdb" that collects refolding techniques into a single, searchable repository to help researchers develop refolding protocols for proteins of interest.

View Article and Find Full Text PDF

Carboxypeptidase cleaves the C-terminal amino acid residue from proteins and peptides. Here, we report the functional and structural characterizations of carboxypeptidase belonging to the M32 family from the thermophilic bacterium Thermus thermophilus HB8 (TthCP). TthCP exhibits a relatively broad specificity for both hydrophilic (neutral and basic) and hydrophobic (aliphatic and aromatic) residues at the C-terminus and shows optimal activity in the temperature range of 75-80 °C and in the pH range of 6.

View Article and Find Full Text PDF

R.PabI is a type II restriction enzyme that recognizes the 5'-GTAC-3' sequence and belongs to the HALFPIPE superfamily. Although most restriction enzymes cleave phosphodiester bonds at specific sites by hydrolysis, R.

View Article and Find Full Text PDF

Nucleases play important roles in nucleic acid processes, such as replication, repair and recombination. Recently, we identified a novel single-strand specific 3'-5' exonuclease, PfuExo I, from the hyperthermophilic archaeon Pyrococcus furiosus, which may be involved in the Thermococcales-specific DNA repair system. PfuExo I forms a trimer and cleaves single-stranded DNA at every two nucleotides.

View Article and Find Full Text PDF
Article Synopsis
  • PhoExo I is a DNA-repair exonuclease from the organism Pyrococcus horikoshii OT3, specific to Thermococcales.
  • The protein was produced in E. coli as inclusion bodies, which were then solubilized using a high-pressure refolding method.
  • Successful crystallization of PhoExo I occurred at 20°C, resulting in a crystal that diffracted X-rays to 1.52 Å resolution and contained two molecules of the protein in its asymmetric unit.
View Article and Find Full Text PDF

Chiral molecule (R)-3-quinuclidinol, a valuable compound for the production of various pharmaceuticals, is efficiently synthesized from 3-quinuclidinone by using NADPH-dependent 3-quinuclidinone reductase (RrQR) from Rhodotorula rubra. Here, we report the crystal structure of RrQR and the structure-based mutational analysis. The enzyme forms a tetramer, in which the core of each protomer exhibits the α/β Rossmann fold and contains one molecule of NADPH, whereas the characteristic substructures of a small lobe and a variable loop are localized around the substrate-binding site.

View Article and Find Full Text PDF

Restriction-modification systems consist of genes that encode a restriction enzyme and a cognate methyltransferase. Thus far, it was believed that restriction enzymes are sequence-specific endonucleases that introduce double-strand breaks at specific sites by catalysing the cleavages of phosphodiester bonds. Here we report that based on the crystal structure and enzymatic activity, one of the restriction enzymes, R.

View Article and Find Full Text PDF

Type III polyketide synthases (PKSs) show diverse cyclization specificity. We previously characterized two Azotobacter type III PKSs (ArsB and ArsC) with different cyclization specificity. ArsB and ArsC, which share a high sequence identity (71%), produce alkylresorcinols and alkylpyrones through aldol condensation and lactonization of the same polyketomethylene intermediate, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • AdpA is a key transcription factor that regulates secondary metabolism and morphology in the bacterium Streptomyces griseus, binding to over 500 operator regions with a specific DNA consensus sequence.
  • The study focuses on the DNA-binding domain of AdpA, identifying how it interacts with target DNA and recognizing specific nucleotide positions.
  • The unique structure of the AdpA-DNA complex demonstrates that only two arginine residues are crucial for recognizing certain nucleotides, allowing AdpA to control a wide array of genes.
View Article and Find Full Text PDF

STK_08120 is a member of the thermoacidophile-specific DUF3211 protein family from Sulfolobus tokodaii strain 7. Its molecular function remains obscure, and sequence similarities for obtaining functional remarks are not available. In this study, the crystal structure of STK_08120 was determined at 1.

View Article and Find Full Text PDF

Theoretical studies have focused on the environmental temperature of the universal common ancestor of life with conflicting conclusions. Here we provide experimental support for the existence of a thermophilic universal common ancestor. We present the thermal stabilities and catalytic efficiencies of nucleoside diphosphate kinases (NDK), designed using the information contained in predictive phylogenetic trees, that seem to represent the last common ancestors of Archaea and of Bacteria.

View Article and Find Full Text PDF

The mycobacterial integration host factor (mIHF) is a small nonspecific DNA-binding protein that is essential for the growth of Mycobacterium smegmatis. mIHF homologues are widely distributed among Actinobacteria, and a Streptomyces homologue of mIHF is involved in control of sporulation and antibiotic production in S. coelicolor A3(2).

View Article and Find Full Text PDF

Streptomyces griseus AdpA is the central transcription factor in the A-factor regulatory cascade and activates a number of genes that are required for both secondary metabolism and morphological differentiation, leading to the onset of streptomycin biosynthesis as well as aerial mycelium formation and sporulation. The DNA-binding domain of AdpA consists of two helix-turn-helix DNA-binding motifs and shows low nucleotide-sequence specificity. To reveal the molecular basis of the low nucleotide-sequence specificity, an attempt was made to obtain cocrystals of the DNA-binding domain of AdpA and several kinds of duplex DNA.

View Article and Find Full Text PDF

Flavin reductase HpaC(St) catalyzes the reduction of free flavins using NADH or NADPH. High hydrostatic pressure was used for the solubilization and refolding of HpaC(St), which was expressed as inclusion bodies in Escherichia coli to achieve high yield in a flavin-free form. The refolded HpaC(St) was purified using Ni-affinity chromatography followed by a heat treatment, which gave a single band on SDS-PAGE.

View Article and Find Full Text PDF

The AREB/ABF family of bZIP transcription factors play a key role in drought stress response and tolerance during the vegetative stage in plants. To reveal the DNA-recognition mechanism of the AREB/ABF family of proteins, the bZIP domain of OsAREB8, an AREB/ABF-family protein from Oryza sativa, was expressed in Escherichia coli, purified and crystallized with its cognate DNA. Crystals of the OsAREB8-DNA complex were obtained by the sitting-drop vapour-diffusion method at 277 K with a reservoir solution consisting of 50 mM MES pH 6.

View Article and Find Full Text PDF
Article Synopsis
  • Carbon catabolite repression (CCR) in bacteria, especially Streptomyces, involves the suppression of certain metabolic processes when a preferred carbon source is present, impacting secondary metabolite production.
  • The study focuses on SgGlkA, a glucokinase from S. griseus, revealing its crystal structures in different states (apo, with glucose, and with glucose plus AMPPNP), marking the first observations of its kind in the ROK family glucokinases.
  • SgGlkA features a unique dimer-of-dimer tetrameric structure, with specific roles for the His157 residue in glucose binding and anomer specificity, suggesting its structural changes may be linked to CCR mechanisms in Streptomy
View Article and Find Full Text PDF
Article Synopsis
  • Glucokinase is an enzyme that converts glucose into glucose 6-phosphate by using ATP, and SgGlkA is a specific type found in the bacterium Streptomyces griseus that helps regulate carbon metabolism.
  • Researchers expressed SgGlkA in E. coli, then purified and crystallized it using a specific method, achieving this at 293 K.
  • They obtained a crystal of SgGlkA combined with glucose that diffracted X-rays at a high resolution of 1.84 Å, indicating a structured space group and specific unit-cell dimensions.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmlqhpoqrg35mngmltdjn1cuhiueokb3i): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once