Publications by authors named "Ken-Ichi Hosoya"

The blood-brain barrier (BBB) is a dynamic interface controlling the compound translocation between the blood and the brain, thereby maintaining neural homeostasis. There is cumulative evidence that BBB impairment during diabetes mellitus (DM) takes part in the progression of cognitive dementia. As tight junction proteins and ATP-binding cassette (ABC) transporters regulate substance exchange between the circulating blood and brain, the expression and function of these molecules under DM should be fully clarified.

View Article and Find Full Text PDF

Ribavirin, an antiretroviral agent targeting the hepatitis C virus, causes male reproductive toxicity. This study investigated the mechanism of ribavirin transport at the blood-testis barrier (BTB). In vivo mouse integration plot analysis after intravenous administration revealed that the net influx clearance of [H]ribavirin in the testis was 3.

View Article and Find Full Text PDF

Cerebral creatine deficiency syndromes (CCDS) are neurodevelopmental disorders caused by a decrease in creatine levels in the central nervous system (CNS) due to functional mutations in creatine synthetic enzymes or creatine transporter (CRT/SLC6A8). Although SLC6A8 mutations have been reported to be the most frequent cause of CCDS, sufficient treatment for patients with CCDS harboring SLC6A8 mutations has not yet been achieved. This study aimed to elucidate the molecular mechanism of SLC6A8 dysfunction caused by the c.

View Article and Find Full Text PDF

Lysosomal trapping, a physicochemical process in which lipophilic cationic compounds are sequestered in lysosomes, can affect drug disposition and cytotoxicity. To better understand lysosomal trapping at the outer blood-retinal barrier (BRB), we investigated the distribution of LysoTracker Red (LTR), a probe compound for lysosomal trapping, in conditionally immortalized rat retinal pigment epithelial (RPE-J) cells. LTR uptake by RPE-J cells was dependent on temperature and attenuated by ammonium chloride and protonophore, which decreased the pH gradient between the lysosome and cytoplasm, suggesting lysosomal trapping of LTR in RPE-J cells.

View Article and Find Full Text PDF

Putrescine is a bioactive polyamine. Its retinal concentration is strictly controlled to maintain a healthy sense of vision. The present study investigated putrescine transport at the blood-retinal barrier (BRB) to gain a better understanding of the mechanisms of putrescine regulation in the retina.

View Article and Find Full Text PDF

Blood-to-retina transport across the inner blood-retinal barrier (BRB) is a key determinant of retinal drug concentration and pharmacological effect. Recently, we reported on the amantadine-sensitive drug transport system, which is different from well-characterized transporters, at the inner BRB. Since amantadine and its derivatives exhibit neuroprotective effects, it is expected that a detailed understanding of this transport system would lead to the efficient retinal delivery of these potential neuroprotective agents for the treatment of retinal diseases.

View Article and Find Full Text PDF

At the inner blood-retinal barrier (BRB), P-glycoprotein (P-gp) contributes to maintaining the homeostasis of substance concentration in the retina by transporting drugs and exogenous toxins from the retina to the circulating blood. Under inflammatory conditions, P-gp activities have been reported to be altered in various tissues. The purpose of this study was to clarify the alterations in P-gp activity at the inner BRB due to lipopolysaccharide (LPS), an inflammatory agent, and the molecular mechanisms of the alterations induced by LPS.

View Article and Find Full Text PDF

Conjugation of angiopep-2 (Ang2) with drugs/compounds is known to increase plasma membrane permeability across endothelial barriers. The inner blood-retinal barrier (BRB) regulates retinal drug distribution and is formed by retinal capillary endothelial cells, supported by Müller cells and retinal pericytes. To elucidate the potential of Ang2 conjugation in promoting retinal drug distribution after peripheral administration across the inner BRB, an in vivo administration study and in vitro transport experiments using newly developed multicellular inner BRB spheroids were performed.

View Article and Find Full Text PDF

3'-Azido-3'-deoxythymidine (AZT), an antiretroviral drug, is often adopted in the therapy for human immunodeficiency virus (HIV) infection, and the characteristics of AZT transport at the blood-testis barrier (BTB) were investigated in this study. In the integration plot analysis that evaluates the transport activity in vivo, the apparent influx clearance of [H]AZT was significantly greater than that of [C]D-mannitol, a non-permeable paracellular transport marker. In the uptake study in vitro with TM4 cells derived from mouse Sertoli cells, [H]AZT uptake exhibited a time- and concentration-dependent manner, of which K and V values being 20.

View Article and Find Full Text PDF

Background: Guanidinoacetate (GAA) induces epileptogenesis and neurotoxicity in the brain. As epileptic animal models have been reported to show elevated cerebral GAA levels, the processing mechanism of GAA in the brain is important for maintaining brain homeostasis. We have revealed that GAA in the cerebrospinal fluid (CSF) is removed by incorporation into the choroid plexus epithelial cells (CPxEpic), which form the blood-CSF barrier (BCSFB).

View Article and Find Full Text PDF

Purpose: The present study aimed to elucidate the transport properties of imipramine and paroxetine, which are the antidepressants, across the blood-brain barrier (BBB) in rats.

Methods: In vivo influx and efflux transport of imipramine and paroxetine across the BBB were tested using integration plot analysis and a combination of brain efflux index and brain slice uptake studies, respectively. Conditionally immortalized rat brain capillary endothelial cells, TR-BBB13 cells, were utilized to characterize imipramine and paroxetine transport at the BBB in vitro.

View Article and Find Full Text PDF

Since it has been known that in vitro cell lines for analyzing drug transport at the inner blood-retinal barrier (BRB) do not completely retain several in vivo functions, new ex vivo/in vitro methods to evaluate drug transport across the inner BRB help us understand the role of this barrier in maintaining the homeostasis of vision and regulating drug distribution to the retina. To expand the limitations of existing in vitro approaches, we established a protocol to isolate fresh rat retinal capillaries as ex vivo model of the inner BRB. Fresh retinal capillaries were prepared by applying serial filtration steps and using density gradient centrifugation.

View Article and Find Full Text PDF

Taurine transport was investigated at the blood-testis barrier (BTB) formed by Sertoli cells. An integration plot analysis of mice showed the apparent influx permeability clearance of [H]taurine (27.7 μL/(min·g testis)), which was much higher than that of a non-permeable paracellular marker, suggesting blood-to-testis transport of taurine, which may involve a facilitative taurine transport system at the BTB.

View Article and Find Full Text PDF

The total synthesis of two decahydroquinoline poison frog alkaloids ent-- and - were achieved in 16 steps (38% overall yield) and 19 steps (31% overall yield), respectively, starting from known compound . Both alkaloids were synthesized from the common key intermediate in a divergent fashion, and the absolute stereochemistry of natural - was determined to be 2, 4a, 5, 6, and 8a. Interestingly, the absolute configuration of the parent decahydroquinoline nuclei of - was the mirror image of that of -, although both alkaloids were isolated from the same poison frog species, () , from Panama.

View Article and Find Full Text PDF

Creatine (Cr) is needed to maintain high energy levels in cells. Since Cr plays reportedly a critical role in neurodevelopment and the immune system, Cr dynamics should be strictly regulated to control these physiological events. This review focuses on the role of transporters that recognize Cr and/or Cr precursors.

View Article and Find Full Text PDF

Since the retina continuously receives light to enable vision, reactive oxygen species (ROS) are easily generated in neural retina. The oxidative stress induced by ROS may be involved in the onset and progression of blinding aging diseases such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Although supply of antioxidants to the retina is important to maintain the redox homeostasis in neural retina, the blood-retinal barrier (BRB) is created by complex tight-junctions of retinal capillary endothelial cells and retinal pigment epithelial cells to prevent the free diffusion of substances.

View Article and Find Full Text PDF

Amantadine, a drug used for the blockage of NMDA receptors, is well-known to exhibit neuroprotective effects. Accordingly, assessment of amantadine transport at retinal barriers could result in the application of amantadine for retinal diseases such as glaucoma. The objective of this study was to elucidate the retinal distribution of amantadine across the inner and outer blood-retinal barrier (BRB).

View Article and Find Full Text PDF

Creatine (Cr)/phosphocreatine has the ability to buffer the high-energy phosphate, thereby contributing to intracellular energy homeostasis. As Cr biosynthetic enzyme deficiency is reported to increase susceptibility to colitis under conditions of inflammatory stress, Cr is critical for maintaining intestinal homeostasis under inflammatory stress. Cr is mainly produced in the hepatocytes and then distributed to other organs of the body by the circulatory system.

View Article and Find Full Text PDF

Human pharmacokinetics (PK) profiles of monoclonal antibodies (mAbs) are usually predicted using non-human primates (NHP), but this comes with drawbacks in terms of cost and throughput. Therefore, we established a human PK profile prediction method using human neonatal Fc receptor (hFcRn) transgenic mice (TgM). We administered launched 13 mAbs to hFcRn TgM and measured the concentration in plasma using electro-chemiluminescence immunoassay.

View Article and Find Full Text PDF

Purpose: In this study, we investigated in detail the transport of phenytoin across the blood-brain barrier (BBB) to identify the transporter(s) involved in BBB-mediated phenytoin efflux from the brain.

Methods: We evaluated the brain-to-blood efflux transport of phenytoin in vivo by determining the brain efflux index (BEI) and uptake in brain slices. We additionally conducted brain perfusion experiments and BEI studies in P-glycoprotein (P-gp)-deficient mice.

View Article and Find Full Text PDF

Prostaglandin (PG) D is a lipid mediator, and in the brain, overproduction of PGD is reportedly involved in the progression and exacerbation of neuroinflammation. The objective of this study was to elucidate PGD efflux transport, under normal and inflammatory conditions, across the blood-brain barrier (BBB), which is formed by brain capillaries. Elimination of [H]PGD across the BBB of normal and lipopolysaccharide (LPS)-induced inflammatory rats was examined by the intracerebral microinjection technique.

View Article and Find Full Text PDF

Lysosomal trapping at the blood-retinal barrier (BRB) was investigated through quinacrine and fluorescence-labeled verapamil (EFV) uptake. Quinacrine uptake by conditionally immortalized rat retinal capillary endothelial (TR-iBRB2) cells suggested saturable and non-saturable transport processes in the inner BRB. The reduction of quinacrine uptake by bafilomycin A1 suggested quinacrine distribution to the acidic intracellular compartments of the inner BRB, and this notion was also supported in confocal microscopy.

View Article and Find Full Text PDF

Guanidinoacetate (GAA), which is a precursor of creatine, is mainly biosynthesized in the renal proximal tubular epithelial cells (RPTECs). Plasma concentration of GAA has been reported to be reduced in patients with monocarboxylate transporter 12 (MCT12) mutation (p.Q215X).

View Article and Find Full Text PDF

The retinal pericytes contribute to the supply of collagen to the basement membrane, and thus, form the structural support of the blood-retinal barrier. Since l-proline (L-Pro) is a major component of collagen, the uptake of L-Pro is an important process for the synthesis of collagen. This study was aimed to elucidate L-Pro transport mechanism(s) in the retinal pericytes.

View Article and Find Full Text PDF
Article Synopsis
  • Retinal pigment epithelial (RPE) cells create the outer blood-retinal barrier (BRB) and play a key role in drug exchange between the retina and blood vessels, using specialized membrane transporters.
  • * Recent research has shown that RPE cells express hemichannels that open when there's low extracellular calcium (Ca), allowing the transport of various drugs and compounds.
  • * In the study, ARPE-19 human RPE cells demonstrated that under low Ca conditions, fluorescent compounds were taken up in a saturable manner, suggesting that these hemichannels facilitate both the influx and efflux of drugs from RPE cells.
View Article and Find Full Text PDF