Publications by authors named "Ken-Daigoro Yokoyama"

Changes in cis-regulatory element composition that result in novel patterns of gene expression are thought to be a major contributor to the evolution of lineage-specific traits. Although transcription factor binding events show substantial variation across species, most computational approaches to study regulatory elements focus primarily upon highly conserved sites, and rely heavily upon multiple sequence alignments. However, sequence conservation based approaches have limited ability to detect lineage-specific elements that could contribute to species-specific traits.

View Article and Find Full Text PDF

Functional modification of regulatory proteins can affect hundreds of genes throughout the genome, and is therefore thought to be almost universally deleterious. This belief, however, has recently been challenged. A potential example comes from transcription factor SP1, for which statistical evidence indicates that motif preferences were altered in eutherian mammals.

View Article and Find Full Text PDF

There often exists a "one-to-many" relationship between a transcription factor and a multitude of binding sites throughout the genome. It is commonly assumed that transcription factor binding motifs remain largely static over the course of evolution because changes in binding specificity can alter the interactions with potentially hundreds of sites across the genome. Focusing on regulatory motifs overrepresented at specific locations within or near the promoter, we find that a surprisingly large number of cis-regulatory elements have been subject to coordinated genome-wide modifications during vertebrate evolution, such that the motif frequency changes on a single branch of vertebrate phylogeny.

View Article and Find Full Text PDF

Transcriptional regulation is mediated by the collective binding of proteins called transcription factors to cis-regulatory elements. A handful of factors are known to function at particular distances from the transcription start site, although the extent to which this occurs is not well understood. Spatial dependencies can also exist between pairs of binding motifs, facilitating factor-pair interactions.

View Article and Find Full Text PDF

Surveys of protein-coding sequences for evidence of positive selection in humans or chimpanzees have flagged only a few genes known to function in neural or nutritional processes, despite pronounced differences between humans and chimpanzees in behavior, cognition and diet. It may be that most such differences are due to changes in gene regulation rather than protein structure. Here, we present the first survey of promoter (5'-flanking) regions, which are rich in cis-regulatory sequences, for evidence of positive selection in humans.

View Article and Find Full Text PDF