Breeding success and survival in colonial seabirds are influenced by nest location, physical surroundings, and external disturbances. Nest location may also directly or indirectly affect individual foraging behavior and physiological conditions, shaping reproductive success and survival. Despite these influences, few studies have integrated the analysis of nest location, behavior, and physiological status.
View Article and Find Full Text PDFBackground: Animal-borne sensors ('bio-loggers') can record a suite of kinematic and environmental data, which are used to elucidate animal ecophysiology and improve conservation efforts. Machine learning techniques are used for interpreting the large amounts of data recorded by bio-loggers, but there exists no common framework for comparing the different machine learning techniques in this domain. This makes it difficult to, for example, identify patterns in what works well for machine learning-based analysis of bio-logger data.
View Article and Find Full Text PDFNorthern elephant seals (Mirounga angustirostris) have been integral to the development and progress of biologging technology and movement data analysis, which continue to improve our understanding of this and other species. Adult female elephant seals at Año Nuevo Reserve and other colonies along the west coast of North America were tracked annually from 2004 to 2020, resulting in a total of 653 instrument deployments. This paper outlines the compilation and curation process of these high-resolution diving and location data, now accessible in two Dryad repositories.
View Article and Find Full Text PDFPrevious studies have described two distinct vascular systems in cetacean fins. However, these studies have been limited to Delphinoidea species, with little information on their three-dimensional structures. In this study, the anatomical analysis of the caudal and dorsal fins of a dwarf sperm whale was conducted using X-ray computed tomography and gross dissection with staining, providing the first confirmation of the two vascular systems in the fins of the family Kogiidae.
View Article and Find Full Text PDFMarine predators often aggregate at the air-sea boundary layer to pursue shared prey. In such scenarios, seabirds are likely to benefit from underwater predators herding fish schools into tight clusters thereby enhancing seabirds' prey detectability and capture potential. However, this coexistence can lead to competition, affecting not only immediate foraging strategies but also their distribution and interspecies dynamics.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2024
The way goal-oriented birds adjust their travel direction and route in response to wind significantly affects their travel costs. This is expected to be particularly pronounced in pelagic seabirds, which utilize a wind-dependent flight style called dynamic soaring. Dynamic soaring seabirds in situations without a definite goal, e.
View Article and Find Full Text PDFRare behaviors displayed by wild animals can generate new hypotheses; however, observing such behaviors may be challenging. While recent technological advancements, such as bio-loggers, may assist in documenting rare behaviors, the limited running time of battery-powered bio-loggers is insufficient to record rare behaviors when employing high-cost sensors (e.g.
View Article and Find Full Text PDFPlastic pollution is distributed patchily around the world's oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation.
View Article and Find Full Text PDFThe largest extinct volant birds ( and ) and pterosaurs ( and ) are thought to have used wind-dependent soaring flight, similar to modern large birds. There are 2 types of soaring: thermal soaring, used by condors and frigatebirds, which involves the use of updrafts to ascend and then glide horizontally; and dynamic soaring, used by albatrosses, which involves the use of wind speed differences with height above the sea surface. Previous studies have suggested that used dynamic soaring, while and used thermal soaring.
View Article and Find Full Text PDFArboreal herbivores require large digestive tracts for leaf fermentation and detoxification; however, they must also have a low body mass that allows them to reach the foliage. The three-toed sloth, Bradypus tridactylus, experiences this trade-off, as leaves comprise 97.2% of its diet.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2022
Cyclones can cause mass mortality of seabirds, sometimes wrecking thousands of individuals. The few studies to track pelagic seabirds during cyclones show they tend to circumnavigate the strongest winds. We tracked adult shearwaters in the Sea of Japan over 11 y and found that the response to cyclones varied according to the wind speed and direction.
View Article and Find Full Text PDFBody-mounted accelerometers provide a new prospect for estimating power use in flying birds, as the signal varies with the two major kinematic determinants of aerodynamic power: wingbeat frequency and amplitude. Yet wingbeat frequency is sometimes used as a proxy for power output in isolation. There is, therefore, a need to understand which kinematic parameter birds vary and whether this is predicted by flight mode (e.
View Article and Find Full Text PDFAnimals exhibit remarkable navigation abilities as if they have an internal compass. Head direction (HD) cells encoding the animal's heading azimuth are found in the brain of several animal species; the HD cell signals are dependent on the vestibular nuclei, where magnetic responsive cells are present in birds. However, it is difficult to determine whether HD cell signals drive the compass orientation in animals, as they do not necessarily rely on the magnetic compass under all circumstances.
View Article and Find Full Text PDFBackground: Understanding what animals do in time and space is important for a range of ecological questions, however accurate estimates of how animals use space is challenging. Within the use of animal-attached tags, radio telemetry (including the Global Positioning System, 'GPS') is typically used to verify an animal's location periodically. Straight lines are typically drawn between these 'Verified Positions' ('VPs') so the interpolation of space-use is limited by the temporal and spatial resolution of the system's measurement.
View Article and Find Full Text PDFAnthropogenic marine debris is a threat to marine organisms. Understanding how this debris spatially distributes at sea and may become associated with marine wildlife are key steps to tackle this current issue. Using bird-borne GPS- and video-loggers on 13 black-footed albatrosses Phoebastria nigripes breeding in Torishima, Japan, we examined the distribution of large floating debris in the Kuroshio Current area, western North Pacific.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
August 2021
To understand foraging strategies and behavioral flexibility in wild animals, it is important to evaluate the physiological costs imposed by foraging efforts and how these costs affect foraging and provisioning behavior. Oxidative stress is a possible physiological indicator associated with foraging behavior in wild seabirds, and may also affect their reproductive performance. However, no previous study has simultaneously recorded foraging behavior and the associated oxidative stress in wild seabirds.
View Article and Find Full Text PDFUnravelling the secrets of wild animals is one of the biggest challenges in ecology, with bio-logging (i.e., the use of animal-borne loggers or bio-loggers) playing a pivotal role in tackling this challenge.
View Article and Find Full Text PDFAnimal behavior is the final and integrated output of brain activity. Thus, recording and analyzing behavior is critical to understand the underlying brain function. While recording animal behavior has become easier than ever with the development of compact and inexpensive devices, detailed behavioral data analysis requires sufficient prior knowledge and/or high content data such as video images of animal postures, which makes it difficult for most of the animal behavioral data to be efficiently analyzed.
View Article and Find Full Text PDFMagellanic penguins (Spheniscus magellanicus) have been reported to become stranded along the coasts of northern Argentina, Uruguay and southern Brazil during the austral winter [1-3]. This location is more than a thousand kilometers distant from their northernmost breeding colony in northern Patagonia. Curiously, females typically outnumber males at stranding sites (approximately three females per male) [2].
View Article and Find Full Text PDFAnimals in the same population consistently differ in their physiology and behaviour, but the underlying mechanisms remain poorly understood. As the autonomic nervous system regulates wide-ranging physiological functions, many of these phenotypic differences may be generated by autonomic activity. We investigated for the first time in a free-living animal population (the streaked shearwater, , a long-lived seabird) whether individuals consistently differ in autonomic activity, over time and across contexts.
View Article and Find Full Text PDFWildlife migration is a spectacular phenomenon [1]. Studies using telemetry - tracking devices attached on free-living animals - have shown that large topographic barriers and obstacles, such as oceans and deserts, elicit extreme feats of migration [2]. Overcoming the challenges of these obstacles might require experience and skill that young individuals lack [2-5].
View Article and Find Full Text PDFNumerous flying and swimming animals constantly need to control their heading (that is, their direction of orientation) in a flow to reach their distant destination. However, animal orientation in a flow has yet to be satisfactorily explained because it is difficult to directly measure animal heading and flow. We constructed a new animal movement model based on the asymmetric distribution of the GPS (Global Positioning System) track vector along its mean vector, which might be caused by wind flow.
View Article and Find Full Text PDF