The choroid plexus (CP) plays significant roles in secreting cerebrospinal fluid (CSF) and forming circadian rhythms. A monolayer of epithelial cells with tight and adherens junctions of CP forms the blood-CSF barrier to control the movement of substances between the blood and ventricles, as microvessels in the stroma of CP have fenestrations in endothelial cells. CP epithelial cells are equipped with several kinds of transporters and ion channels to transport nutrient substances and secrete CSF.
View Article and Find Full Text PDFThe choroid plexus (CP) plays central roles in regulating the microenvironment of the central nervous system by secreting the majority of cerebrospinal fluid (CSF) and controlling its composition. A monolayer of epithelial cells of CP plays a significant role in forming the blood-CSF barrier to restrict the movement of substances between the blood and ventricles. CP epithelial cells are equipped with transporters for glucose and lactate that are used as energy sources.
View Article and Find Full Text PDFDespite recent advances in diagnostic procedures for neurological disorders, it is still difficult to definitively diagnose some neurodegenerative diseases without neuropathological examination of autopsied brain tissue. As pathological processes in the brain are frequently reflected in the components of cerebrospinal fluid (CSF), CSF samples are sometimes useful for diagnosis. After CSF is secreted from the choroid plexus epithelial cells in the ventricles, some flows in the brain, some is mixed with intracerebral interstitial fluid, and some is excreted through two major drainage pathways, i.
View Article and Find Full Text PDFEvidence showing the functional significance of the choroid plexus is accumulating. Although it is clinically well-known that calcification is frequently seen in the choroid plexus of aged human brains, it is unclear why calcification occurs in the aged choroid plexus and what exert effects on the calcification has. In this study, immunohistochemical localizations of collagens and other molecules related to fibrosis or calcification were investigated on the choroid plexus of autopsied human brains.
View Article and Find Full Text PDFGlucose metabolism produces lactate and hydrogen ions in an anaerobic environment. Cerebral ischemia or hypoxia is believed to become progressively lactacidemic. Monocarboxylate transporters (MCTs) in endothelial cells are essential for the transport of lactate from the blood into the brain.
View Article and Find Full Text PDFThe choroid plexus plays a central role in the regulation of the microenvironment of the central nervous system by secreting the majority of the cerebrospinal fluid and controlling its composition, despite that it only represents approximately 1% of the total brain weight. In addition to a variety of transporter and channel proteins for solutes and water, the choroid plexus epithelial cells are equipped with glucose, fructose, and urate transporters that are used as energy sources or antioxidative neuroprotective substrates. This review focuses on the recent advances in the understanding of the transporters of the SLC2A and SLC5A families (GLUT1, SGLT2, GLUT5, GLUT8, and GLUT9), as well as on the urate-transporting URAT1 and BCRP/ABCG2, which are expressed in choroid plexus epithelial cells.
View Article and Find Full Text PDFIron plays essential roles in the central nervous system. However, how the iron level is regulated in brain cells including glia and neurons remains to be fully clarified. In this study, the localizations of hepcidin, ferroportin, and hephaestin, which are known to be involved in iron efflux, were immunohistochemically examined in autopsied human brains.
View Article and Find Full Text PDFThe entry of blood-borne macromolecular substances into the brain parenchyma from cerebral vessels is blocked by the blood-brain barrier (BBB) function. Accordingly, increased permeability of the vessels induced by insult noted in patients suffering from vascular dementia likely contributes to the cognitive impairment. On the other hand, blood-borne substances can enter extracellular spaces of the brain via endothelial cells at specific sites without the BBB, and can move to brain parenchyma, such as the hippocampus and periventricular areas, adjacent to specific sites, indicating the contribution of increased permeability of vessels in the specific sites to brain function.
View Article and Find Full Text PDFIt has been suggested that urate plays a protective role in neurons, while hyperuricemia is correlated with atherosclerosis and cardiovascular disease. However, whether there is a system that directly transports urate into the brain remains to be clarified. In this study, the localization of glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1), which are known to be representative reabsorptive urate transporters, was immunohistochemically examined in autopsied human brains.
View Article and Find Full Text PDFA 27-year-old pregnant woman was scheduled for cesarean section under spinal anesthesia. Although there was no trouble in three repeated spinal punctures, the anesthetic effect was insufficient. Then we changed anesthetic management to general anesthesia.
View Article and Find Full Text PDF