Somatostatin receptor-4 (SST) is a therapeutic target for several conditions, including Alzheimer's disease, seizures, neuropsychiatric disorders, and pain. Our previous work on 1,2,4-triazole derivatives led to enhanced SST binding affinity, selectivity, and functional activity. Herein we report the discovery of 3-thio-1,2,4-triazole series as selective and high affinity SST agonists.
View Article and Find Full Text PDFPharmacol Rev
October 2024
Over 4 decades of research support the link between Alzheimer disease (AD) and somatostatin [somatotropin-releasing inhibitory factor (SRIF)]. SRIF and SRIF-expressing neurons play an essential role in brain function, modulating hippocampal activity and memory formation. Loss of SRIF and SRIF-expressing neurons in the brain rests at the center of a series of interdependent pathological events driven by amyloid- peptide (A), culminating in cognitive decline and dementia.
View Article and Find Full Text PDFThere are various approaches in which one can isolate microglia from murine brains, such as immunomagnetic, density gradient, FACS and differential adhesive methods. In this procedure a modified flask-tapping approach was used due to its simplicity and reproducibility. Our protocol requires only a single step to isolate the microglia from the mixed cell population.
View Article and Find Full Text PDFSomatostatin receptor subtype 4 (SSTR4) is expressed in BV2 microglia, suggesting that SSTR4 agonists may impact microglia function. This study assessed the high-affinity SSTR4 agonist SM-I-26 (SMI) (0 nM, 10 nM, 1000 nM) against lipopolysaccharide (LPS)-induced inflammation (0, 10 or 100 ng/ml) over 6 or 24 h in BV2 microglia. Cell viability, nitrite output and mRNA expression changes of genes associated with our target (Sstr4), inflammation (Tnf-α, Il-6, Il-1β, inos), anti-inflammatory and anti-oxidant actions (Il-10, Catalase), and mediators of Aβ binding/phagocytosis (Msr1, Cd33, Trem1, Trem2) were measured.
View Article and Find Full Text PDFSomatostatin receptor-4 (SST) is highly expressed in brain regions affiliated with learning and memory. SST agonist treatment may act to mitigate Alzheimer's disease (AD) pathology. An integrated approach to SST agonist lead optimization is presented herein.
View Article and Find Full Text PDFMicroglia are the resident immune cell of the brain involved in the development and progression of Alzheimer's disease (AD). Modulation of microglia activity represents a potential mechanism for treating AD. Herein, the compound NNC 26-9100 (NNC) was evaluated in toxicity, nitric oxide release, Aβ1-42 uptake and cytosolic calcium assays during lipopolysaccharide (LPS)-activated conditions using mouse BV2 microglia cells.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive neurodegenerative disorder resulting in memory and cognitive impairment. The use of somatostatin receptor subtype-4 (SSTR) agonists have been proposed for AD treatment. This study investigated the effects of selective SSTR agonist NNC 26-9100 on mRNA expression of key genes associated with AD pathology (microglia mediators of Aβ phagocytosis, amyloid-beta (Aβ)-degrading enzymes, anti-oxidant enzymes and pro-inflammatory cytokines) in 3xTg-AD mice.
View Article and Find Full Text PDFA series of compounds containing a 1,2,4-triazole moiety were synthesized, targeting the somatostatin receptor subtype-4 (sst). Compounds were developed in which the Phe/Phe/Phe, Trp, and Lys mimetic groups were interchanged at positions 3, 4, and 5 of the 1,2,4-triazole ring. The 1,2,4-triazoles containing an 2-(imidazol-4-yl)ethyl substituent at position-3 demonstrated moderate binding affinity at sst.
View Article and Find Full Text PDFBackground: Diet-mediated alterations of critical brain nutrient transporters, major facilitator super family domain-containing 2a (Mfsd2a) and glucose transporter 1 (Glut1), have wide reaching implications in brain health and disease.
Objective: The aim of the study was to examine the impact of long-term low- and high-fat diets with lard or fish oil on critical brain nutrient transporters, Mfsd2a and Glut1.
Methods: Eight-week-old male C57BL/6 mice were fed 1 of the following 4 diets for 32 wk: 10% of kcal from lard, 10% of kcal from fish oil, 41% of kcal from lard, or 41% of kcal from fish oil.
Glycogen synthase kinase (GSK)-3β is a multifunctional protein that has been implicated in the pathological characteristics of Alzheimer's disease (AD), including the heightened levels of neurofibrillary tangles, amyloid-beta (Aβ), and neurodegeneration. We have previously shown that an antisense oligonucleotide directed at the Tyr 216 site on GSK-3β (GAO) when injected centrally can decrease GSK-3β levels, improve learning and memory, and decrease oxidative stress. In addition, we showed that GAO can cross the blood-brain barrier.
View Article and Find Full Text PDFSteroids have a wide spectrum of impact, serving as fundamental regulators of nearly every physiological process within the human body. Therapeutic applications of steroids are equally broad, with a diverse range of medications and targets. Within the central nervous system (CNS), steroids influence development, memory, behavior, and disease outcomes.
View Article and Find Full Text PDFSoluble amyloid-β peptide (Aβ) oligomers have been hypothesized to be primary mediators of Alzheimer's disease progression. In this regard, reduction of soluble Aβ-oligomers levels within the brain may provide a viable means in which to treat the disease. Somatostatin receptor subtype-4 (SSTR4) agonists have been proposed to reduce Aβ levels in the brain via enhancement of enzymatic degradation.
View Article and Find Full Text PDFSoluble amyloid β-protein (Aβ) oligomers are primary mediators of synaptic dysfunction associated with the progression of Alzheimer's disease. Such Aβ oligomers exist dependent on their rates of aggregation and metabolism. Use of selective somatostatin receptor-subtype agonists have been identified as a potential means to mitigate Aβ accumulation in the brain, via regulation of the enzyme neprilysin.
View Article and Find Full Text PDFAge and estrogen levels alter blood-brain barrier (BBB) tight junction (TJ) regulation, impacting brain homeostasis and pathological outcomes. This examination evaluated BBB TJ and estrogen receptor (ER) protein expression changes in young (8-10 week) and middle-aged (10-12 month) ovariectomized female Fisher-344 rats with chronic 17β-estradiol or placebo treatment. Middle-aged rats showed decreased protein expression of occludin with 17β-estradiol (55 kDa band) or placebo (45, 55, 60 kDa bands) treatment compared to respective young.
View Article and Find Full Text PDFSelective somatostatin receptor subtype agonists have been proposed as a means to mitigate learning and memory loss associated with Alzheimer's disease. The first aim of this study evaluated blood-to-brain transport and regional brain distribution of NNC 26-9100, a selective somatostatin subtype-4 (sst4) receptor agonist. The entry rate of (131)I-NNC 26-9100 was K(i)=0.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) is formed by the endothelial cells of cerebral microvessels, providing a dynamic interface between the peripheral circulation and the central nervous system. The tight junctions (TJs) between the endothelial cells serve to restrict blood-borne substances from entering the brain. Under ischemic stroke conditions decreased BBB TJ integrity results in increased paracellular permeability, directly contributing to cerebral vasogenic edema, hemorrhagic transformation, and increased mortality.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) serves as a critical regulator of brain homeostasis. Following hypoxia (i.e.
View Article and Find Full Text PDFSeveral classes of compounds (thioureas, ureas, beta-glucosides, sulfonamides, and cyclic peptides) show enhanced binding affinity and selectivity at somatostatin subtype 4 receptors (sst4). Pharmacophore models have recently been proposed to explain receptor subtype selectivity. The chemistry and therapeutic potential of sst4 ligands will be the subject of this review.
View Article and Find Full Text PDFPeptides are key regulators in cellular and intercellular physiological responses and possess enormous promise for the treatment of pathological conditions. Opioid peptide activity within the central nervous system (CNS) is of particular interest for the treatment of pain owing to the elevated potency of peptides and the centrally mediated actions of pain processes. Despite this potential, peptides have seen limited use as clinically viable drugs for the treatment of pain.
View Article and Find Full Text PDFThis investigation focuses on transcription factor involvement in blood-brain barrier (BBB) endothelial cell-induced alterations under conditions of hypoxia and post-hypoxia/reoxygenation (H/R), using established in vivo/ex vivo and in vitro BBB models. Protein/DNA array analyses revealed a correlation in key transcription factor activation during hypoxia and H/R, including NFkappaB and hypoxia-inducible factor (HIF)1. Electrophoretic mobility shift assays confirmed NFkappaB and HIF1 binding activity ex vivo and in vitro, under conditions of hypoxia and H/R.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
December 2003
Cerebral microvessel endothelial cells that form the blood-brain barrier (BBB) have tight junctions (TJs) that are critical for maintaining brain homeostasis. The effects of initial reoxygenation after a hypoxic insult (H/R) on functional and molecular properties of the BBB and TJs remain unclear. In situ brain perfusion and Western blot analyses were performed to assess in vivo BBB integrity on reoxygenation after a hypoxic insult of 6% O2 for 1 h.
View Article and Find Full Text PDFThe objectives of this study were to examine the effect of poly(ethylene glycol) (PEG) conjugation on the tyrosine residues of biphalin to determine the proper size PEG for optimal efficacy and investigate the antinociceptive profile of PEG-biphalin against biphalin via three routes of administration. All antinociception evaluations were made using a radiant-heat tail flick analgesia meter. (2 kDa)(2) PEG-biphalin was identified as the optimal size of PEG to enhance the antinociceptive profile following intravenous administration of 685 nmol kg(-1) of biphalin or PEG-biphalin [(1 kDa)(2), (2 kDa)(2), (5 kDa)(2), (12 kDa)(2), (20 kDa)(2)].
View Article and Find Full Text PDFPeptide-based drug development is a rapidly growing field within pharmaceutical research. Nevertheless, peptides have found limited clinical use due to several physiological and pathological factors. Pluronic block copolymers represent a growing technology with the potential to enhance efficacy of peptide therapeutics.
View Article and Find Full Text PDF