Publications by authors named "Ken Stokes"

Background: This study was conducted to characterize the behavior of chronic modern endocardial electrodes with capacitively coupled constant voltage pulse generators in canines.

Methods: Five animals were studied with chronic paired unipolar microporous platinum, and porous steroid-eluting electrodes in the ventricle. Screw-in and passive fixation electrodes were also implanted in the atrium.

View Article and Find Full Text PDF

Polyether polyurethanes are subject to oxidation catalyzed by, and through direct (redox) reaction with transition metal ions (metal ion oxidation, MIO). The source of the ions is corrosion of metallic parts within an implanted device. A Shore 80A polyether polyurethane was modified with fluoropolymer (E80AF) or polyethylene oxide (E80AP) surface modifying end groups (SME).

View Article and Find Full Text PDF

Polyether polyurethanes are subject to autooxidation and environmental stress cracking (ESC) because of interactions with lysosomal oxygen-free radicals. Oxidation can also be catalyzed by and caused by direct (redox) reaction with transition metal ions (metal ion oxidation, MIO). The source of the ions is corrosion of metallic parts within an implanted device.

View Article and Find Full Text PDF

A series of Shore 80A polyether polyurethanes were synthesized with from 0 to 6% fluoropolymer surface modifying endgroups (SME) to provide the bulk properties of the polyurethane with the surface properties of the fluoropolymer. It was theorized that the fluoropolymer would migrate to the surface, forming a monolayer barrier to the oxidants and crack-driving agents released by macrophages and foreign body giant cells in vivo. In a 12-week biostability screening test, samples strained to 400% elongation appeared to be highly stable.

View Article and Find Full Text PDF

Polyether polyurethanes are extremely interesting for use in implantable devices. They are, however, susceptible to autoxidative degradation and stress cracking. One approach to improving biostability is to replace some of the polyether with polysiloxane.

View Article and Find Full Text PDF

Polyether polyurethanes are subject to oxidation catalyzed by and through direct (redox) reaction with transition metal ions (cobalt), released by corrosion of metallic parts in an implanted device. Replacing part of the polyether with polysiloxane appears to reduce susceptibility to metal ion oxidation (MIO). In vitro studies indicated that polyurethanes containing 20-35% polysiloxane (PS-20 and PS-35) are about optimum.

View Article and Find Full Text PDF

Polyethylene oxide (PEO) on polymer surfaces has been reported to reduce cellular adhesion, a very desirable property for cardiac pacing leads. A Shore 80A polyether polyurethane with up to 6% PEO surface-modifying end groups (SME) was evaluated for its chronic in vivo biostability. In a short-term (12 week) screening test, strained samples appeared to develop the same surface oxidation as unmodified polymer, but did not produce visible cracking > or =500x, prompting a longer-term study.

View Article and Find Full Text PDF

Adherent macrophages and foreign body giant cells (FBGCs) are known to release degradative molecules that can be detrimental to the long-term biostability of polyurethanes. The modification of polyurethanes using surface modifying endgroups (SMEs) and/or the incorporation of silicone into the polyurethane soft segments may alter macrophage adhesion, fusion and apoptosis resulting in improved long-term biostability. An in vitro study of macrophage adhesion, fusion and apoptosis was performed on polyurethanes modified with fluorocarbon SMEs, polyethylene oxide (PEO) SMEs, or poly(dimethylsiloxane) (PDMS) co-soft segment and SMEs.

View Article and Find Full Text PDF

Biomaterial-centered infections, initiated by bacterial adhesion, persist due to a compromised host immune response. Altering implant materials with surface modifying endgroups (SMEs) may enhance their biocompatibility by reducing bacterial and inflammatory cell adhesion. A rotating disc model, which generates shear stress within physiological ranges, was used to characterize adhesion of leukocytes and Staphylococcus epidermidis on polycarbonate-urethanes and polyetherurethanes modified with SMEs (polyethylene oxide, fluorocarbon and dimethylsiloxane) under dynamic flow conditions.

View Article and Find Full Text PDF