Publications by authors named "Ken S Sorbie"

Immiscible viscous fingering in porous media occurs when a high viscosity fluid is displaced by an immiscible low viscosity fluid. This paper extends a recent development in the modelling of immiscible viscous fingering to directly simulate experimental floods where the viscosity of the aqueous displacing fluid was increased (by the addition of aqueous polymer) after a period of low viscosity water injection. This is referred to as tertiary polymer flooding, and the objective of this process is to increase the displacement of oil from the system.

View Article and Find Full Text PDF

Several experimental studies have shown significant improvement in heavy oil recovery with polymers displaying different types of rheology, and the effect of rheology has been shown to be important. These experimental studies have been designed to investigate why this is so by applying a constant flow rate and the same polymer effective viscosity at this injection rate. The types of rheology studied vary from Newtonian and shear thinning behavior to complex rheology involving shear thinning and thickening behavior.

View Article and Find Full Text PDF

Using X-ray computed microtomography, we have visualized and quantified the in situ structure of a trapped nonwetting phase (oil) in a highly heterogeneous carbonate rock after injecting a wetting phase (brine) at low and high capillary numbers. We imaged the process of capillary desaturation in 3D and demonstrated its impacts on the trapped nonwetting phase cluster size distribution. We have identified a previously unidentified pore-scale event during capillary desaturation.

View Article and Find Full Text PDF

The in situ rheology of polymeric solutions has been studied experimentally in etched silicon micromodels which are idealizations of porous media. The rectangular channels in these etched networks have dimensions typical of pore sizes in sandstone rocks. Pressure drop/flow rate relations have been measured for water and non-Newtonian hydrolyzed-polyacrylamide (HPAM) solutions in both individual straight rectangular capillaries and in networks of such capillaries.

View Article and Find Full Text PDF