Purpose: To demonstrate temporal lobe necrosis (TLN) rate and clinical/dose-volume factors associated with TLN in radiation-naïve patients with head and neck cancer treated with proton therapy where the field of radiation involved the skull base.
Materials And Methods: Medical records and dosimetric data for radiation-naïve patients with head and neck cancer receiving proton therapy to the skull base were retrospectively reviewed. Patients with <3 months of follow-up, receiving <45 GyRBE or nonconventional fractionation, and/or no follow-up magnetic resonance imaging (MRI) were excluded.
Glioblastoma is the most frequently occurring and invariably fatal primary brain tumor in adults. The vast majority of glioblastomas is characterized by chromosomal copy number alterations, including gain of whole chromosome 7 and loss of whole chromosome 10. Gain of whole chromosome 7 is an early event in gliomagenesis that occurs in proneural-like precursor cells, which give rise to all isocitrate dehydrogenase (IDH) wild-type glioblastoma transcriptional subtypes.
View Article and Find Full Text PDFPurpose: As part of consolidative therapy in high-risk neuroblastoma, modern protocols recommend radiation therapy (RT) both to the primary site and to sites of metastatic disease that persist after induction chemotherapy. Although there are abundant data showing excellent local control (LC) with 21 Gy directed at the primary site, there are few data describing the feasibility and efficacy of RT directed at metastatic sites of disease as part of consolidation.
Methods And Materials: All patients with neuroblastoma who received RT to metastatic sites of disease as a part of consolidative therapy at a single institution between 2000 and 2015 were reviewed.
The current difficulty in visualizing the true extent of malignant brain tumors during surgical resection represents one of the major reasons for the poor prognosis of brain tumor patients. Here, we evaluated the ability of a hand-held Raman scanner, guided by surface-enhanced Raman scattering (SERS) nanoparticles, to identify the microscopic tumor extent in a genetically engineered RCAS/tv-a glioblastoma mouse model. In a simulated intraoperative scenario, we tested both a static Raman imaging device and a mobile, hand-held Raman scanner.
View Article and Find Full Text PDFGlioblastomas (GBMs) are the most common and malignant primary brain tumors and are aggressively treated with surgery, chemotherapy, and radiotherapy. Despite this treatment, recurrence is inevitable and survival has improved minimally over the last 50 years. Recent studies have suggested that GBMs exhibit both heterogeneity and instability of differentiation states and varying sensitivities of these states to radiation.
View Article and Find Full Text PDFIn human glioblastomas (hGBMs), tumor-propagating cells with stem-like characteristics (TPCs) represent a key therapeutic target. We found that the EphA2 receptor tyrosine kinase is overexpressed in hGBM TPCs. Cytofluorimetric sorting into EphA2(High) and EphA2(Low) populations demonstrated that EphA2 expression correlates with the size and tumor-propagating ability of the TPC pool in hGBMs.
View Article and Find Full Text PDFPost-transcriptional regulation of gene expression contributes to the protein output of a cell, however, methods for measuring translational regulation in complex in vivo systems are lacking. Here, we describe a sensitive method for measuring translational regulation in defined cell populations from heterogeneous tissue in vivo. We adapted the translating ribosome affinity purification (TRAP) methodology to measure the relative occupancy of individual mRNA transcripts in translating ribosomes in the Olig2-positive tumor cell population in a genetically engineered mouse model (GEM) of glioma.
View Article and Find Full Text PDFThe difficulty in delineating brain tumor margins is a major obstacle in the path toward better outcomes for patients with brain tumors. Current imaging methods are often limited by inadequate sensitivity, specificity and spatial resolution. Here we show that a unique triple-modality magnetic resonance imaging-photoacoustic imaging-Raman imaging nanoparticle (termed here MPR nanoparticle) can accurately help delineate the margins of brain tumors in living mice both preoperatively and intraoperatively.
View Article and Find Full Text PDFBackground: The tumor microenvironment contains normal, non-neoplastic cells that may contribute to tumor growth and maintenance. Within PDGF-driven murine gliomas, tumor-associated astrocytes (TAAs) are a large component of the tumor microenvironment. The function of non-neoplastic astrocytes in the glioma microenvironment has not been fully elucidated; moreover, the differences between these astrocytes and normal astrocytes are unknown.
View Article and Find Full Text PDF