Publications by authors named "Ken Parker"

Postural orthostatic tachycardia syndrome (POTS) is characterized by chronic fatigue and dizziness and affected individuals by definition have orthostatic intolerance and tachycardia. There is considerable overlap of symptoms in patients with POTS and chronic fatigue syndrome (CFS), prompting speculation that POTS is akin to a deconditioned state. We previously showed that adolescents with postural orthostatic tachycardia syndrome (POTS) have excessive heart rate (HR) during, and slower HR recovery after, exercise - hallmarks of deconditioning.

View Article and Find Full Text PDF

Objectives: Results of randomized treatment trials for laryngopharyngeal reflux (LPR) are mixed. The cause and effect between gastroesophageal reflux and laryngeal symptoms remain elusive.

Aims: To determine the efficacy of single-dose pantoprazole in newly diagnosed LPR and to correlate hypopharyngeal reflux with symptom improvement.

View Article and Find Full Text PDF

We hereby report on a three year project initiative undertaken by our research team encompassing large-scale protein expression profiling and annotations of human primary lung fibroblast cells. An overview is given of proteomic studies of the fibroblast target cell involved in several diseases such as asthma, idiopatic pulmonary disease, and COPD. It has been the objective within our research team to map and identify the protein expressions occurring in both activated-, as well as resting cell states.

View Article and Find Full Text PDF

Miniaturized liquid chromatography nanoseparation in combination with minigel fractionation of human primary cell nuclei is presented. We obtained high-sensitivity and high-throughput identification of expressed proteins by subcellular fractionation and nanocapillary liquid chromatography interfaced to both electrospray ionization (ESI)- and matrix-assisted laser desorption/ionisation (MALDI) tandem mass spectrometry. The reversed-phase nanocapillary eluents were applied directly onto the MALDI target plate as discrete crystal spots using in-line matrix infusion.

View Article and Find Full Text PDF