Publications by authors named "Ken Mochizuki"

We explore the eigenvalue statistics of a non-Hermitian version of the Su-Schrieffer-Heeger model, with imaginary on-site potentials and randomly distributed hopping terms. We find that owing to the structure of the Hamiltonian, eigenvalues can be purely real in a certain range of parameters, even in the absence of parity and time-reversal symmetry. As it turns out, in this case of purely real spectrum, the level statistics is that of the Gaussian orthogonal ensemble.

View Article and Find Full Text PDF