Publications by authors named "Ken Maes"

Article Synopsis
  • Acute Myeloid Leukemia (AML) is a complex disease with few treatment options, prompting research into new targeted therapies, particularly focusing on the S100A9 protein.
  • Silencing S100A9 in AML cells increased cell death and reduced growth by affecting important signaling pathways like mTOR and endoplasmic reticulum stress, with similar effects observed using the S100A9 inhibitor tasquinimod.
  • Targeting S100A9 enhances the effectiveness of venetoclax, a current treatment, by reducing levels of BCL-2 and c-MYC, suggesting that S100A9 could be a promising target for improving AML therapies.
View Article and Find Full Text PDF

Background: Immunotherapeutic targets in multiple myeloma (MM) have variable expression height and are partly expressed in subfractions of patients only. With increasing numbers of available compounds, strategies for appropriate choice of targets (combinations) are warranted. Simultaneously, risk assessment is advisable as patient's life expectancy varies between months and decades.

View Article and Find Full Text PDF

Introduction: Pure androgen-secreting adrenocortical tumors are a rare but important cause of peripheral precocious puberty.

Case Presentation: Here, we report a pure androgen-secreting adrenocortical tumor in a 2.5-year-old boy presenting with penile enlargement, pubic hair, frequent erections, and rapid linear growth.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are exploring a new treatment called tasquinimod for patients with multiple myeloma, a type of blood cancer.
  • This treatment helps fight cancer by targeting certain immune cells in the body, making T cells (which help fight illness) more active.
  • In tests on mice, tasquinimod not only reduced cancer growth but also improved bone health, leading to longer survival for the mice with cancer.
View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) are non-hematopoietic cells that have a broad therapeutic potential. To obtain sufficient cells for clinical application, they must be expanded . In the initial expansion protocols described, fetal calf serum (FCS) was used as the reference growth supplement, but more recently different groups started to replace FCS with platelet lysate (PL).

View Article and Find Full Text PDF

The success of immunotherapeutic approaches in hematological cancers is partially hampered by the presence of an immunosuppressive microenvironment. Myeloid-derived suppressor cells (MDSC) are key components of this suppressive environment and are frequently associated with tumor cell survival and drug resistance. Based on their morphology and phenotype, MDSC are commonly subdivided into polymorphonuclear MDSC (PMN-MDSC or G-MDSC) and monocytic MDSC (M-MDSC), both characterized by their immunosuppressive function.

View Article and Find Full Text PDF

The analysis of bone marrow (BM) samples in multiple myeloma (MM) patients can lead to the underestimation of the genetic heterogeneity within the tumor. Blood-derived liquid biopsies may provide a more comprehensive approach to genetic characterization. However, no thorough comparison between the currently available circulating biomarkers as tools for mutation profiling in MM has been published yet and the use of extracellular vesicle-derived DNA for this purpose in MM has not yet been investigated.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple myeloma (MM) is a challenging plasma cell cancer with high-risk patients facing poor outcomes, highlighting the need for effective treatments.* -
  • Researchers used bioinformatics to identify PRMT5 as a key target for therapy, finding that inhibiting it with EPZ015938 significantly reduced myeloma cell growth and induced apoptosis.* -
  • Inhibition of PRMT5 affects important cellular processes like DNA repair and alternative splicing, suggesting that it could be a viable therapeutic target, especially when combined with existing drugs like melphalan.*
View Article and Find Full Text PDF
Article Synopsis
  • Immunotherapy has shown promise for treating melanoma, but response rates are still low, suggesting the need for combination therapies.
  • The study investigated the effects of a dual inhibitor targeting histone methyltransferase G9a and DNA methyltransferases on tumor growth, finding it promoted tumor cell cycle arrest and an immune response.
  • Results indicated that this drug enhances immune cell infiltration and boosts the effectiveness of T-cell and dendritic cell vaccinations, highlighting its potential as a strategy for improving melanoma treatment outcomes.
View Article and Find Full Text PDF

Multiple myeloma (MM) is an (epi)genetic highly heterogeneous plasma cell malignancy that remains mostly incurable. Deregulated expression and/or genetic defects in epigenetic-modifying enzymes contribute to high-risk disease and MM progression. Overexpression of the histone methyltransferase G9a was reported in several cancers, including MM, correlating with disease progression, metastasis, and poor prognosis.

View Article and Find Full Text PDF

Cancer cells are under the surveillance of the host immune system. Nevertheless, a number of immunosuppressive mechanisms allow tumors to escape protective responses and impose immune tolerance. Epigenetic alterations are central to cancer cell biology and cancer immune evasion.

View Article and Find Full Text PDF

Targeted alpha-particle therapy (TAT) might be a relevant therapeutic strategy to circumvent resistance to conventional therapies in the case of HER2-positive metastatic cancer. Single-domain antibody fragments (sdAb) are promising vehicles for TAT because of their excellent properties, high target affinity, and fast clearance kinetics. This study combines the cytotoxic α-particle emitter bismuth-213 (Bi) and HER2-targeting sdAbs.

View Article and Find Full Text PDF

Multiple myeloma (MM) is well-known for the development of drug resistance, leading to relapse. Therefore, finding novel treatment strategies remains necessary. By performing a lipidomics assay on MM patient plasma, we aimed to identify new targets.

View Article and Find Full Text PDF

Diffuse large B cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) are among the most aggressive B cell non-Hodgkin lymphomas. Maternal embryonic leucine zipper kinase (MELK) plays a role in cancer cell cycle progression and is associated with poor prognosis in several cancer cell types. In this study, the role of MELK in DLBCL and MCL and the therapeutic potential of MELK targeting is evaluated.

View Article and Find Full Text PDF

AXL belongs to the TAM (TYRO3, AXL, and MERTK) receptor family, a unique subfamily of the receptor tyrosine kinases. Their common ligand is growth arrest-specific protein 6 (GAS6). The GAS6/TAM signaling pathway regulates many important cell processes and plays an essential role in immunity, hemostasis, and erythropoiesis.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a B-cell malignancy characterized by the accumulation of clonal plasma cells in the bone marrow. In normal plasma cell development, cells undergo programmed DNA breaks and translocations, a process necessary for generation of a wide repertoire of antigen-specific antibodies. This process also makes them vulnerable for the acquisition of chromosomal defects.

View Article and Find Full Text PDF

Background: The aggressive B-cell non-Hodgkin lymphomas diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) are characterised by a high proliferation rate. The anaphase-promoting complex/cyclosome (APC/C) and its co-activators Cdc20 and Cdh1 represent an important checkpoint in mitosis. Here, the role of the APC/C and its co-activators is examined in DLBCL and MCL.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a clonal plasma cell malignancy that develops primarily in the bone marrow (BM), where reciprocal interactions with the BM niche foster MM cell survival, growth, and drug resistance. MM cells furthermore reshape the BM to their own needs by affecting the different BM stromal cell types resulting in angiogenesis, bone destruction, and immune suppression. Despite recent advances in treatment modalities, MM remains most often incurable due to the development of drug resistance to all standard of care agents.

View Article and Find Full Text PDF

Multiple Myeloma (MM) is an incurable malignancy of terminally differentiated plasma cells, which are predominantly localized in the bone marrow. Myeloid-derived suppressor cells (MDSC) are described to promote MM progression by immunosuppression and induction of angiogenesis. However, their direct role in drug resistance and tumor survival is still unknown.

View Article and Find Full Text PDF

Progression of multiple myeloma (MM) is largely dependent on the bone marrow (BM) microenvironment wherein communication through different factors including extracellular vesicles takes place. This cross-talk not only leads to drug resistance but also to the development of osteolysis. Targeting vesicle secretion could therefore simultaneously ameliorate drug response and bone disease.

View Article and Find Full Text PDF

Murine models for multiple myeloma (MM) are often used to investigate pathobiology of multiple myeloma and disease progression. Unlike transgenic mice models, where it is known which oncogene is driving MM disease, the somatic aberrations of spontaneous syngeneic 5T models of MM have not yet been reported. Here, we analyzed the copy-number alterations (CNA) and mutational landscape of 5T2, 5T33vv and 5TGM1 murine MM models using whole-genome and whole-exome sequencing.

View Article and Find Full Text PDF

Immune evasion is an important driver of disease progression in the plasma cell malignancy multiple myeloma. Recent work highlights the potential of epigenetic modulating agents as tool to enhance anti-tumor immunity. The immune modulating effects of the combination of a DNA methyltransferase inhibitor and a histone deacetylase inhibitor in multiple myeloma is insufficiently characterized.

View Article and Find Full Text PDF

Cancer is known for its cellular changes contributing to tumour growth and cell proliferation. As part of these changes, metabolic rearrangements are identified in several cancers, including multiple myeloma (MM), which is a condition whereby malignant plasma cells accumulate in the bone marrow (BM). These metabolic changes consist of generation, inhibition and accumulation of metabolites and metabolic shifts in MM cells.

View Article and Find Full Text PDF