Supersymmetry (SUSY) relating bosons and fermions plays an important role in unifying different fundamental interactions in particle physics. Since no superpartners of elementary particles have been observed, SUSY, if present, must be broken at low-energy. This makes it important to understand how SUSY is realized and broken, and study their consequences.
View Article and Find Full Text PDFThermal conductance has emerged as a powerful probe of topological order in the quantum Hall effect and beyond. The interpretation of experiments crucially depends on the ratio of the sample size and the equilibration length, on which energy exchange among contrapropagating chiral modes becomes significant. We show that at low temperatures the equilibration length diverges as 1/T^{2} for almost all Abelian and non-Abelian topological orders.
View Article and Find Full Text PDF