Publications by authors named "Ken Hon-Hung Kwok"

We explored the protective mechanisms of human neuronal mitochondrial uncoupling protein-5 (UCP5) in MPP(+)- and dopamine-induced toxicity after its stable overexpression in SH-SY5Y cells. We raised specific polyclonal antibodies. Overexpressed UCP5 localized in mitochondria but not in cytosol.

View Article and Find Full Text PDF

LRRK2 plays an important role in Parkinson's disease (PD), but its biological functions are largely unknown. Here, we cloned the homolog of human LRRK2, characterized its expression, and investigated its biological functions in zebrafish. The blockage of zebrafish LRRK2 (zLRRK2) protein by morpholinos caused embryonic lethality and severe developmental defects such as growth retardation and loss of neurons.

View Article and Find Full Text PDF

Mitochondrial uncoupling protein-4 (UCP4) enhances neuronal cell survival in MPP(+)-induced toxicity by suppressing oxidative stress and preserving intracellular ATP and mitochondrial membrane potential. UCP4 expression is increased by MPP(+), but its regulation is unknown. Using serial human UCP4 promoter-luciferase reporter gene constructs, we identified and characterized several cis-acting elements that can regulate UCP4 expression.

View Article and Find Full Text PDF

Mitochondrial dysfunction is involved in the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD). Uncoupling proteins (UCPs) delink ATP production from biofuel oxidation in mitochondria to reduce oxidative stress. UCP2 is expressed in brain, and has neuroprotective effects under various toxic insults.

View Article and Find Full Text PDF

Mitochondrial uncoupling proteins (UCPs) uncouple oxidative phosphorylation from ATP synthesis. We explored the neuroprotective role of UCP4 with its stable overexpression in SH-SY5Y cells, after exposure to either MPP(+) or dopamine to induce ATP deficiency and oxidative stress. Cells overexpressing UCP4 proliferated faster in normal cultures and after exposure to MPP(+) and dopamine.

View Article and Find Full Text PDF

Uncoupling proteins (UCPs) uncouple oxidative phosphorylation from ATP synthesis by dissipating proton gradient across mitochondrial inner membrane. The physiological role of neuronal specific UCP5 is unknown. We explored the effects of reduced UCP5 expression on mitochondrial membrane potential (MMP), oxidative stress, ATP levels, and cell viability, under normal and MPP+-induced cytotoxic conditions, in human catecholaminergic SH-SY5Y cells.

View Article and Find Full Text PDF

Methyl-4-phenylpyridinium ion (MPP(+)), a specific dopaminergic neurotoxin, inhibits mitochondrial complex I activity, generates reactive oxygen species (ROS), reduces ATP production, and induces cell death. We explored changes in expression of uncoupling proteins (UCPs 2, 4, and 5) following MPP(+)-induced toxicity in SK-N-SH cells over 72 hr at the transcriptional (quantification of mRNA by real-time RT-PCR) and translational (Western analysis) levels. UCP5 mRNA and protein were markedly up-regulated (1 mM MPP(+) at 72 hr caused a twofold increase, P < 0.

View Article and Find Full Text PDF