Publications by authors named "Ken Chiang"

Low-melting liquid metals are emerging as a new group of highly functional solvents due to their capability to dissolve and alloy various metals in their elemental state to form solutions as well as colloidal systems. Furthermore, these liquid metals can facilitate and catalyze multiple unique chemical reactions. Despite the intriguing science behind liquid metals and alloys, very little is known about their fundamental structures in the nanometric regime.

View Article and Find Full Text PDF

Crystallization of alloys from a molten state is a fundamental process underpinning metallurgy. Here the direct imaging of an intermetallic precipitation reaction at equilibrium in a liquid-metal environment is demonstrated. It is shown that the outer layers of a solidified intermetallic are surprisingly unstable to the depths of several nanometers, fluctuating between a crystalline and a liquid state.

View Article and Find Full Text PDF

The conversion of low-value plastic waste into high-value products such as carbon nanomaterial is of recent interest. In the current study, the non-condensable pyrolysis gases, produced from Polypropylene Copolymer (PPC) feedstock, was converted into bamboo-type carbon nanotubes (BCNTs) through catalytic chemical vapour deposition using biochar. Experiments were conducted in a three-zone furnace fixed bed reactor, where PPC was pyrolysed in the second zone and carbon nanotubes (CNTs) growth was eventuated in the third zone.

View Article and Find Full Text PDF

In this work we report the production of BiWO loaded N-biochar composites (BW/N-B) for the removal of rhodamine-B and the reduction of Cr(VI) in water. Biochar was treated with urea to produce a N-modified biochar (N-Biochar), with great conductivity and special 2D sheet platform structure. Materials with different ratios of biochar and urea were produced.

View Article and Find Full Text PDF

Bioresorbable silicon electronics technology offers unprecedented opportunities to deploy advanced implantable monitoring systems that eliminate risks, cost and discomfort associated with surgical extraction. Applications include postoperative monitoring and transient physiologic recording after percutaneous or minimally invasive placement of vascular, cardiac, orthopaedic, neural or other devices. We present an embodiment of these materials in both passive and actively addressed arrays of bioresorbable silicon electrodes with multiplexing capabilities, which record in vivo electrophysiological signals from the cortical surface and the subgaleal space.

View Article and Find Full Text PDF

Successful synthesis of stable MFe2O4 nanoparticles@C has been realized by applying the novel concept of using levulinic acid possessing carboxyl and carbonyl groups to facilitate the interaction with metal ions (M(2+) and Fe(3+)) and the carbon source (phloroglucinol) in the sol-gel polymerization method. All the samples have been characterized by XRD, SEM, FT-IR, TEM, HRTEM, ICP-AES, CHNS, and N2 adsorption-desorption, and were studied for their performance towards hydrogenation reaction of styrene. Out of three samples NiFe2O4 gave excellent selective hydrogenation activity of styrene to ethyl benzene (100% conversion and 100% selectivity).

View Article and Find Full Text PDF

A nonaqueous photodeposition procedure for forming Au nanoparticles on semiconducting supports (TiO(2), CeO(2), and ZrO(2)) was investigated. Intrinsic excitation of the support was sufficient to induce Au(0) nucleation, without the need for an organic hole-scavenging species. Photoreduction rates were higher over TiO(2) and ZrO(2) than over CeO(2), likely due to a lower rate of photogenerated electron recombination.

View Article and Find Full Text PDF

Objective: Inherited or acquired mutations in the heme biosynthetic pathway leads to a debilitating class of diseases collectively known as porphyrias, with symptoms that can include anemia, cutaneous photosensitivity, and neurovisceral dysfunction. In a genetic screen for hematopoietic mutants, we isolated a zebrafish mutant, montalcino (mno), which displays hypochromic anemia and porphyria. The objective of this study was to identify the defective gene and characterize the phenotype of the zebrafish mutant.

View Article and Find Full Text PDF

The photocatalytic removal of humic acid (HA) using TiO2 under UVA irradiation was examined by monitoring changes in the UV(254) absorbance, dissolved organic carbon (DOC) concentration, apparent molecular weight distribution, and trihalomethane formation potentials (THMFPs) over treatment time. A resin fractionation technique in which the samples were fractionated into four components: very hydrophobic acids (VHA), slightly hydrophobic acids, hydrophilic charged (CHA) and hydrophilic neutral (NEU) was also employed to elucidate the changes in the chemical nature of the HA components during treatment. The UVA/TiO2 process was found to be effective in removing more than 80% DOC and 90% UV(254) absorbance.

View Article and Find Full Text PDF

By identifying the Electron Partitioning Effect (EPE) as responsible for the large gold deposits usually formed in the conventional photodeposition method, a low energy UV light-based method for the preparation of comparatively high-activity gold-titania catalysts was developed. These materials were tested in the carbon monoxide (CO) oxidation reaction and returned markedly higher levels of activity at room temperature, when compared to catalysts prepared by the traditional photodeposition method. This is the first instance of using a light-mediated process for preparing catalysts active for the CO oxidation reaction.

View Article and Find Full Text PDF

A critical step in cell division is formation of the mitotic spindle, which is a bipolar array of microtubules that mediates chromosome separation. Here, we report that the SCL-interrupting locus (SIL), a vertebrate-specific cytosolic protein, is necessary for proper mitotic spindle organization in zebrafish and human cells. A homozygous lethal zebrafish mutant, cassiopeia (csp), was identified by a genetic screen for mitotic mutant.

View Article and Find Full Text PDF

Proper chromosome segregation is essential for maintenance of genomic integrity and instability resulting from failure of this process may contribute to cancer. Here, we demonstrate that a mutation in the mitotic regulator separase is responsible for the cell cycle defects seen in the zebrafish mutant, cease&desist (cds). Analysis of cds homozygous mutant embryos reveals high levels of polyploidy and aneuploidy, spindle defects, and a mitotic exit delay.

View Article and Find Full Text PDF

The superiority of silver deposited titania particles over bare titania particles for the photocatalytic oxidation of selected organic compounds is explained: the presence of silver mainly enhances the photocatalytic oxidation of organic compounds that are predominantly oxidised by holes, while it has only an insignificant effect on those organic compounds that require hydroxyl radicals for their mineralisation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionnf3mesbqq8cr9q2d1va6uk93kdkfethi): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once