Publications by authors named "Ken Aldren S Usman"

Materials and devices that harvest acoustic energy can enable autonomous powering of microdevices and wireless sensors. However, traditional acoustic energy harvesters rely on brittle piezoceramics, which have restricted their use in wearable electronic devices. To address these limitations, this study involves the fabrication of acoustic harvesters using electrospinning of the piezoelectric polymer PVDF-TrFE onto fabric-based electrodes.

View Article and Find Full Text PDF

Wearable electronic sensors have recently attracted tremendous attention in applications such as personal health monitoring, human movement detection, and sensory skins as they offer a promising alternative to counterparts made from traditional metallic conductors and bulky metallic conductors. However, the real-world use of most wearable sensors is often hindered by their limited stretchability and sensitivity, and ultimately, their difficulty to integrate into textiles. To overcome these limitations, wearable sensors can incorporate flexible conductive fibers as electrically active components.

View Article and Find Full Text PDF

X-rays are a penetrating form of high-energy electromagnetic radiation with wavelengths ranging from 10 pm to 10 nm. Similar to visible light, X-rays provide a powerful tool to study the atoms and elemental information of objects. Different characterization methods based on X-rays are established, such as X-ray diffraction, small- and wide-angle X-ray scattering, and X-ray-based spectroscopies, to explore the structural and elemental information of varied materials including low-dimensional nanomaterials.

View Article and Find Full Text PDF

MXene inks are promising candidates for fabricating conductive circuits and flexible devices. Here, MXene inks prepared from solvent mixtures demonstrate long-term stability and can be employed in commercial rollerball pens to write electronic circuits on flexible substrates. Such circuits exhibit a fast and accurate capacitive response for touch-boards and water level measurement, indicating the excellent potential of these MXene inks in electrical device fabrication.

View Article and Find Full Text PDF

Ti C T MXene (or "MXene" for simplicity) has gained noteworthy attention for its metal-like electrical conductivity and high electrochemical capacitance-a unique blend of properties attractive toward a wide range of applications such as energy storage, healthcare monitoring, and electromagnetic interference shielding. However, processing MXene architectures using conventional methods often deals with the presence of defects, voids, and isotropic flake arrangements, resulting in a trade-off in properties. Here, a sequential bridging (SB) strategy is reported to fabricate dense, freestanding MXene films of interconnected flakes with minimal defects, significantly enhancing its mechanical properties, specifically tensile strength (≈285 MPa) and breaking energy (≈16.

View Article and Find Full Text PDF

Three-dimensional lithium (Li) hosts have been shown to suppress the growth of Li dendrites for next generation Li metal batteries. Here, we report a cost-effective and scalable approach to produce highly stable Li composite anodes from industrial hemp textile waste. The hemp@Li composite anodes demonstrate stable cycling both in half and full cells.

View Article and Find Full Text PDF

Regenerated silk fibers typically fall short of silkworm cocoon fibers in mechanical properties due to reduced fiber crystal structure and alignment. One approach to address this has been to employ inorganic materials as reinforcing agents. The present study avoids the need for synthetic additives, demonstrating the first use of exfoliated silk nanofibers to control silk solution crystallization, resulting in all-silk pseudocomposite fibers with remarkable mechanical properties.

View Article and Find Full Text PDF

The exciting combination of high electrical conductivity, high specific capacitance and colloidal stability of two-dimensional TiCT MXene (referred to as MXene) has shown great potential in a wide range of applications including wearable electronics, energy storage, sensors, and electromagnetic interference shielding. To realize its full potential, recent literature has reported a variety of solution-based processing methodologies to develop MXenes into multifunctional architectures, such as fibres, films and aerogels. In response to these recent critical advances, this review provides a comprehensive analysis of the diverse solution-based processing methodologies currently being used for MXene-architecture fabrication.

View Article and Find Full Text PDF

High aspect ratio two-dimensional TiCT MXene flakes with extraordinary mechanical, electrical, and thermal properties are ideal candidates for assembling elastic and conductive aerogels. However, the scalable fabrication of large MXene-based aerogels remains a challenge because the traditional preparation method relies on supercritical drying techniques such as freeze drying, resulting in poor scalability and high cost. Herein, the use of porous melamine foam as a robust template for MXene/reduced graphene oxide aerogel circumvents the volume shrinkage during its natural drying process.

View Article and Find Full Text PDF

The increasing interest toward wearable and portable electronic devices calls for multifunctional materials and fibers/yarns capable of seamless integration with everyday textiles. To date, one particular gap inhibiting the development of such devices is the production of robust functional fibers with improved electronic conductivity and electrochemical energy storage capability. Recent efforts have been made to produce functional fibers with 2D carbides known as MXenes to address these demands.

View Article and Find Full Text PDF

Piezoelectric fluoropolymers convert mechanical energy to electricity and are ideal for sustainably providing power to electronic devices. To convert mechanical energy, a net polarization must be induced in the fluoropolymer, which is currently achieved via an energy-intensive electrical poling process. Eliminating this process will enable the low-energy production of efficient energy harvesters.

View Article and Find Full Text PDF

Superelastic aerogels with excellent electrical conductivity, reversible compressibility, and high durability hold great potential for varied emerging applications, ranging from wearable electronics to multifunctional scaffolds. In the present work, superelastic MXene/reduced graphene oxide (rGO) aerogels are fabricated by mixing MXene and GO flakes, followed by a multistep reduction of GO, freeze-casting, and finally an annealing process. By optimizing both the composition and reducing conditions, the resultant aerogel shows a reversible compressive strain of 95%, surpassing all current reported values.

View Article and Find Full Text PDF

We demonstrate the first use of pure films of two-dimensional (2D) transition metal carbides and nitrides (TiCT MXene) as an electrode material for electrogenerated chemiluminescence (ECL). The TiCT MXene electrodes exhibited excellent electrochemical stability in the cathodic scan range and produced bright reductive-oxidation ECL using peroxydisulfate as a co-reactant with the tris(2,2'-bipyridine)ruthenium(ii) ([Ru(bpy)]) luminophore.

View Article and Find Full Text PDF

Two-dimensional titanium carbide (TiCT), or MXene, is a new nanomaterial that has attracted increasing interest due to its metallic conductivity, good solution processability, and excellent energy storage performance. However, TiCT MXene flakes suffer from degradation through oxidation due to prolonged exposure to oxygenated water. Preventing the occurrence of oxidation, i.

View Article and Find Full Text PDF

2D transition metal carbides and nitrides called "MXene" are recent exciting additions to the 2D nanomaterials family. The high electrical conductivity, specific capacitance, and hydrophilic nature of MXenes rival many other 2D nanosheets and have made MXenes excellent candidates for diverse applications including energy storage, electromagnetic shielding, water purification, and photocatalysis. However, MXene nanosheets degrade relatively quickly in the presence of water and oxygen, imposing great processing challenges for various applications.

View Article and Find Full Text PDF