Publications by authors named "Ken'ichi Kitano"

Interchange between the nickel +2 and +3 oxidation states precisely controls the reversible rearrangement of the tris(2-pyridylthio)methanide (tptm) ligand in the organometallic nickel(II) complex [{Ni(μ-Br)-(tptm)}(2)] (2). Oxidation of 2 first gives the corresponding Ni(III) complex [{Ni(μ-Br)(tptm)}(2)][PF(6)](2) (4). However, in solution the tptm ligand in 4 slowly undergoes a rearrangement, in which the N and S atoms of one of the pyridylthiolate arms exchange Ni and C bonding partners, thereby resulting in an "N,S-confused" isomer of tptm in the product, [NiBr(bpttpm)]PF(6) (5; bpttpm= bis(2-pyridylthio)(2-thiopyridinium)-methyl).

View Article and Find Full Text PDF

A reaction of FeCl(2) with tris(2-pyridylthio)methane (tptmH) produced the carbanion complex [Fe(tptm)(CH(3)CN)(2)](FeCl(4)){(C(2)H(5))(3)NH}. When FeI(2) was used instead of FeCl(2), the carbene complex [FeI(pyt)(bptmd)] (pyt = 2-pyridinethiolate, bptmd = bis(2-pyridylthio)methylidene) was isolated. The carbene forms [FeX(pyt)(bptmd)](n+) (n = 1 for X = CH(3)CN, n = 0 for X = I) were observed for [Fe(tptm)(CH(3)CN)(2)](FeCl(4)){(C(2)H(5))(3)NH} and [FeI(pyt)(bptmd)] in chloroform, whereas the carbene-carbanion equilibrium was observed in acetonitrile by NMR measurements.

View Article and Find Full Text PDF

Tris(2-pyridylthio)methane (tptmH) reacts with ZnCl(2) producing the Zn-C containing complex of [ZnCl(tptm)], whose cyclic voltammogram shows an irreversible oxidation peak at 0.2 V vs. E(0')(Fc(+/0)).

View Article and Find Full Text PDF