As a widely used eukaryotic model organism, Neurospora crassa offers advantages in genetic studies due to its diverse biology and rapid growth. Traditional genetic manipulation methods, such as homologous recombination, require a considerable amount of time and effort. In this study, we present an easy-to-use CRIPSR/Cas9 system for N.
View Article and Find Full Text PDFThe model organism has been cultivated in laboratories since the 1920s and its saprotrophic lifestyle has been established for decades. However, beyond their role as saprotrophs, fungi engage in intricate relationships with plants, showcasing diverse connections ranging from mutualistic to pathogenic. Although has been extensively investigated under laboratory conditions, its ecological characteristics remain largely unknown.
View Article and Find Full Text PDFJ Basic Microbiol
February 2024
So far mating type determination in Neurospora crassa requires test crosses with strains of known mating type. We present a simple, quick, and reliable polymerase chain reaction-based method for mating type determination in N. crassa.
View Article and Find Full Text PDFThere have been two hundred reports that endophytic fungi produce Taxol®, but its production yield is often rather low. Although considerable efforts have been made to increase Taxol/taxanes production in fungi by manipulating cocultures, mutagenesis, genome shuffles, and gene overexpression, little is known about the molecular signatures of Taxol biosynthesis and its regulation. It is known that some fungi have orthologs of the Taxol biosynthetic pathway, but the overall architecture of this pathway is unknown.
View Article and Find Full Text PDFEisosomes are plasma-membrane-associated protein complexes of fungi and algae involved in various cellular processes. The eisosome composition of the budding yeast is well described, but there is a limited number of studies only about eisosomes in filamentous fungi. In our study, we examined the LSP-1 protein (NcLSP1).
View Article and Find Full Text PDFGene expression in plant mitochondria is mainly regulated by nuclear-encoded proteins on a post-transcriptional level. Pentatricopeptide repeat (PPR) proteins play a major role by participating in mRNA stability, splicing, RNA editing, and translation initiation. PPR proteins were also shown to be part of the mitochondrial ribosome (rPPR proteins), which may act as regulators of gene expression in plants.
View Article and Find Full Text PDFRed yeasts of the genus are of great interest to the biotechnological industry due to their ability to produce valuable natural products, such as lipids and carotenoids with potential applications as surfactants, food additives, and pharmaceuticals. Herein, we explored the biosynthetic potential of 50-3-19/20B collected from the Mid-Atlantic Ridge using modern genomics and untargeted metabolomics tools. 50-3-19/20B exhibited anticancer activity when grown on PDA medium, while antimicrobial activity was observed when cultured on WSP-30 medium.
View Article and Find Full Text PDFMCC/eisosomes are protein-organized domains in the plasma membrane of fungi and algae. However, the composition and function(s) of MCC/eisosomes in the filamentous fungus were previously unknown. To identify proteins that localize to MCC/eisosomes in , we isolated proteins that co-purified with the core MCC/eisosome protein LSP-1, which was tagged with GFP.
View Article and Find Full Text PDFBackground: Flowering is a crucial stage during plant development. Plants may respond to unfavorable conditions by accelerating reproductive processes like flowering. In a recent study, we showed that PRECOCIOUS1 (POCO1) is a mitochondrial pentatricopeptide repeat (PPR) protein involved in flowering time and abscisic acid (ABA) signaling in Arabidopsis thaliana.
View Article and Find Full Text PDFFlowering is a vital developmental shift in plants from vegetative to reproductive phase. The timing of this shift is regulated by various linked genetic pathways including environmental cues and internal regulation. Here we report a role for an Arabidopsis gene, AT1G15480, which encodes a P-class pentatricopeptide repeat (PPR) protein, affecting flowering time.
View Article and Find Full Text PDFMarine Fungi are potent secondary metabolite producers. However, limited genetic information are available their biosynthetic gene clusters (BGCs) and their biotechnological applications. To overcome this lack of information, herein, we used next-generation sequencing methods for genome sequencing of two marine fungi, isolated from the German Wadden Sea, namely Calcarisporium sp.
View Article and Find Full Text PDFPlants, bacteria and some fungi are known to produce indole-3-acetic acid (IAA) by employing various pathways. Among these pathways, the indole-3-pyruvic acid (IPA) pathway is the best studied in green plants and plant-associated beneficial microbes. While IAA production circuitry in plants has been studied for decades, little is known regarding the IAA biosynthesis pathway in fungal species.
View Article and Find Full Text PDFFungi produce an astonishing variety of secondary metabolites, some of which belong to the most toxic compounds in the living world. Several fungal metabolites have anti-insecticidal properties which may yield advantages to the fungus in competition with insects for exploitation of environmental resources. Using the Drosophila melanogaster/Aspergillus nidulans ecological model system to assess secondary metabolite mutant genotypes, we find a major role for the veA allele in insect/fungal confrontations that exceeds the influence of other factors such as LaeA.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
July 2016
The ascomycete Aspergillus niger is widely used in the biotechnology, for instance in producing most of the world's citric acid. It is also known as a major food and feed contaminant. While generation of gene knockouts for functional genomics has become feasible in ku70 mutants, analyzing gene functions or metabolic pathways remains a laborious task.
View Article and Find Full Text PDFThe marine-derived Scopulariopsis brevicaulis strain LF580 produces scopularides A and B, which have anticancerous properties. We carried out genome sequencing using three next-generation DNA sequencing methods. De novo hybrid assembly yielded 621 scaffolds with a total size of 32.
View Article and Find Full Text PDFScopularide A is a promising potent anticancer lipopeptide isolated from a marine derived Scopulariopsis brevicaulis strain. The compound consists of a reduced carbon chain (3-hydroxy-methyldecanoyl) attached to five amino acids (glycine, l-valine, d-leucine, l-alanine, and l-phenylalanine). Using the newly sequenced S.
View Article and Find Full Text PDFNatural compounds from marine fungi are an excellent source for the discovery and development of new drug leads. The distinct activity profiles of the two cyclodepsipeptides scopularide A and B against cancer cell lines set their marine producer strain Scopulariopsis brevicaulis LF580 into the focus of the EU project MARINE FUNGI. One of the main goals was the development of a sustainable biotechnological production process for these compounds.
View Article and Find Full Text PDFBEM46 proteins are evolutionarily conserved, but their functions remain elusive. We reported previously that the BEM46 protein in Neurospora crassa is targeted to the endoplasmic reticulum (ER) and is essential for ascospore germination. In the present study, we established a bem46 knockout strain of N.
View Article and Find Full Text PDFAs previously demonstrated, the maize cox2 RNA is fully edited in cauliflower mitochondria. Use of constructs with a deleted cox2 intron, however, led to a loss of RNA editing at almost all editing sites, with only a few sites still partially edited. Likewise, one deletion in exon 1 and three in exon 2 abolish RNA editing at all cox2 sites analyzed.
View Article and Find Full Text PDFFungi are a large group of eukaryotes found in nearly all ecosystems. More than 250 fungal genomes have already been sequenced, greatly improving our understanding of fungal evolution, physiology, and development. However, for the Pezizomycetes, an early-diverging lineage of filamentous ascomycetes, there is so far only one genome available, namely that of the black truffle, Tuber melanosporum, a mycorrhizal species with unusual subterranean fruiting bodies.
View Article and Find Full Text PDFThe bud emergence 46 (BEM46) protein from Neurospora crassa belongs to the α/β-hydrolase superfamily. Recently, we have reported that the BEM46 protein is localized in the perinuclear ER and also forms spots close by the plasma membrane. The protein appears to be required for cell type-specific polarity formation in N.
View Article and Find Full Text PDFAlternative splicing is a complex and regulated process, which results in mRNA with different coding capacities from a single gene. Extend and types of alternative splicing vary greatly among eukaryotes. In this review, I focus on alternative splicing in ascomycetes, which in general have significant lower extend of alternative splicing than mammals.
View Article and Find Full Text PDFMethods Mol Biol
March 2013
Fungi produce an astonishing variety of secondary metabolites, some of which belong to the most toxic compounds in the living world. However, the benefits of secondary metabolites for fungi are often obscure. Here we describe a method that will aid in the analysis of fungal gene expression upon interkingdom competition with insects.
View Article and Find Full Text PDF