Publications by authors named "Kemei Pei"

Waterborne polyurethane (WPU) offers many advantages and is widely used in coatings, leathers, adhesives, biomaterials, and other consumer products. However, WPU is highly flammable. Many reactive flame retardants have been developed, but their char formation efficiency is still unsatisfactory, and the melt dripping during combustion has not been effectively suppressed.

View Article and Find Full Text PDF

A series of cationic waterborne polyurethane (CWPU) emulsions was synthesized with isophorone diisocyanate (IPDI) and hexamethylene diisocyanate (HDI) as hard segments; polyol (N210) and polyethylene glycol (PEG-2000) as soft segments; N-methyldiethanolamine (MDEA) as a hydrophilic chain extender; and trimethylolpropane (TMP) as a crosslinker. Then, the effects of the R-value, MDEA content, and TMP content on the properties of the CWPU emulsion, film, and fabric treatment were investigated. The results indicated that when the R-value was 3.

View Article and Find Full Text PDF

Polyethylene glycol 1000 (PEG1000) and epoxy resin E20 were used to synthesize the E20/PEG1000 polymer (EP1K), which was later transformed into a self-emulsifying water-based epoxy curing agent by reacting with m-Xylylenediamine (MXDA). The effects of molecular weight, the molar ratio of the raw materials, the catalyst dosage, and the different co-solvents on the properties of the prepared curing agent were systematically explored. The infrared absorption spectra of E20, EP1K, and the water-based epoxy curing agent were compared and analyzed.

View Article and Find Full Text PDF

Expanded polystyrene (EPS) is causing severe environmental problems due to its high consumption and non-biodegradability. Upcycling waste EPS into high value-added functional materials is highly advisable in terms of sustainability and environmental concerns. Meanwhile, it is imperative to develop new anti-counterfeiting materials with high security against increasingly high-tech counterfeiting.

View Article and Find Full Text PDF

Zinc porphyrin-based porous polymers (PPs-Zn) with different pore sizes were prepared by controlling the reaction condition of click chemistry, and the protein adsorption in PPs-Zn and the catalytic activity of immobilized enzyme were investigated. PPs-Zn-1 with 18 nm and PPS-Zn-2 with 90 nm of pore size were characterized by FTIR, NMR and nitrogen absorption experiments. The amount of adsorbed protein in PPs-Zn-1 was more than that in PPs-Zn-2 for small size proteins, such as lysozyme, lipase and bovine serum albumin (BSA).

View Article and Find Full Text PDF

Complex wastewater with massive components is now a serious environmental issue facing humanity. Selective removal of low-concentration contaminants in mixed constituents holds great promise for increasing water supplies. Bioenzymes like horseradish peroxidase exhibit oxidizing power and selectivity.

View Article and Find Full Text PDF

Density functional theory, UV absorption, and Raman spectroscopy are used to investigate the structure and properties of TDO in aqueous solution. The equilibrium structures, UV absorption spectra, interaction energies, and Raman spectroscopy data of TDO, AIMSA, and 12 TDO or AIMSA clusters are calculated. Raman spectroscopy experiments are carried out by 488 and 208 nm laser excitation.

View Article and Find Full Text PDF

The chemistry of enzymes presents a key to understanding the catalysis in the world. In the pursuit of controllable catalytic oxidation, researchers make extensive efforts to discover and develop functional materials that exhibit various properties intrinsic to enzymes. Here we describe a bioinspired catalytic system using ordered-mesoporous-carbon (OMC)-bonded cobalt tetraaminophthalocyanine (CoTAPc-OMC) as a catalyst that could mimic the space environment and reactive processes of metalloporphyrin-based heme enzymes and employing linear dodecylbenzenesulfonate as the fifth ligands to control the activation of H2O2 toward the peroxidase-like oxidation.

View Article and Find Full Text PDF

In the present paper, quantum chemistry calculations method based on the density functional theory (DFT) and surface-enhanced Raman scattering (SERS) spectroscopy technique were used to investigate the adsorption behavior and enhancement effect of thiabendazole on the nanometer silver colloid surface systematically from theoretical and experimental perspective. By sodium citrate's reduction reaction, nanometer silver colloid with has high surface-enhanced Raman scattering activity was prepared. And then the authors studied the surface-enhanced Raman scattering spectroscopy of the thiabendazole in aqueous solution.

View Article and Find Full Text PDF

The resonance Raman spectroscopic study of the excited state structural dynamics of 1,3-dimethyluracil (DMU), 5-bromo-1,3-dimethyluracil (5BrDMU), uracil, and thymine in water and acetonitrile were reported. Density functional theory calculations were carried out to help elucidate the ultraviolet electronic transitions associated with the A-, and B-band absorptions and the vibrational assignments of the resonance Raman spectra. The effect of the methylation at N1, N3 and C5 sites of pyrimidine ring on the structural dynamics of uracils in different solvents were explored on the basis of the resonance Raman intensity patterns.

View Article and Find Full Text PDF

An in-source, stretched, hollow fiber membrane (HFM) inlet has been developed to improve the sensitivity of on-line time-of-flight mass spectrometry (TOFMS) with a vacuum ultraviolet (VUV) lamp based single photon ionization (SPI) source for the direct analysis of liquid samples. A 2-cm HFM was stretched to 8 cm in length, and placed in the ion source and directly under the VUV lamp window with a distance of 15 mm. Compared with the conventional flow-through configuration under the same experimental conditions, the signal intensities of selected volatile organic compounds (VOCs) of methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), benzene, toluene and p-xylene were increased over 5-fold in magnitude, and the response time was shortened to one-third.

View Article and Find Full Text PDF

Resonance Raman (RR) spectra and quantum chemical calculations were used to investigate the photodissociation dynamics of propanil in the S2 state. The RR spectra indicate that the photorelaxation dynamics for the S0 → S2 excited state of propanil is predominantly along nine motions: C═O stretch, ν51 (1659 cm(-1)), ring C═C stretch, ν50 (1590 cm(-1)), NH wag/ring C═C stretch, ν49 (1534 cm(-1)), ring CCH in-plane bend/NH wag, ν42 (1383 cm(-1)), NH wag/-CH2- rock, ν41 (1353 cm(-1)), ring C═C stretch/NH wag/-CH2- rock in-plane, ν40 (1299 cm(-1)), Ph-NH stretch/ring CCH in-plane bend, ν37 (1236 cm(-1)), ring CCH in-plane bend, ν35 (1150 cm(-1)), -CH2CH3 twist, ν33 (1080 cm(-1)), ring trigonal bend, ν31 (1029 cm(-1)), ring CCH bend out-of-plane, ν27 (899 cm(-1)), whole skeleton deformation in-plane, ν20(688 cm(-1)). Strong electron coupling between S1 and S2 of propanil is found by quantum chemistry calculations and depolarization spectra.

View Article and Find Full Text PDF

Resonance Raman spectra (RRs) for 4,5-ethylenedithio-1,3-dithiole-2-thione (EDDT) were obtained with 397.9 and 416 nm excitation wavelengths, and density functional calculations were performed to elucidate the electronic transitions and the RRs of EDDT in chloroform solvent. The RRs indicate that the Franck-Condon region photodynamics have multidimensional character with nuclear motion predominantly along the C(4)═C(5) stretch and the C(4)═C(5) twist out-of-plane.

View Article and Find Full Text PDF

FT-Raman and/or FT-IR spectra of 3-amino-2-cyclohexen-1-one (ACyO) in solid state and/or in solvents of water and acetonitrile were obtained. Density functional theory calculations were done to help elucidate the vibrational band assignments. The A-band resonance Raman spectra of ACyO were acquired in water and acetonitrile solvents to examine the excited state structural dynamics and the state-mixing or curve-crossing tuned by solvents.

View Article and Find Full Text PDF

The resonance Raman spectra were obtained for both 2-thiopyridone (2TP) and its proton-transfer tautomer 2-mercaptopyridine (2MP) in water solution. Density functional theory (DFT) calculations were carried out to help elucidate their ultraviolet electronic transitions and vibrational assignments of the resonance Raman spectra associated with their B-band absorptions. The nanosecond time-resolved resonance Raman spectroscopic experiment was carried out to further confirm the assignment that the transient species was the ground state 2MP.

View Article and Find Full Text PDF

Resonance Raman spectra were obtained for benzamide in methanol and acetonitrile solutions with excitation wavelengths in resonance with the S(3) state. These spectra indicate that the Franck-Condon region photodissociation dynamics have multidimensional character with the motions mainly along the benzene ring C[Double Bond]C stretch nu(9), the Ph-CO-NH(2) and ring benzene stretch nu(14), the CCH in plane bend nu(17), the Ph-CO-NH(2) stretch and NH(2) rock nu(19), the ring trigonal bend nu(23), and the ring deformation and Ph-CO-NH(2) stretch nu(29). A preliminary resonance Raman intensity analysis was done, and the results were compared to those previously reported for acetophenone to examine the substituent effect.

View Article and Find Full Text PDF

Resonance Raman spectra were obtained for 2-hydroxybenzaldehyde (OHBA) in cyclohexane solution with excitation wavelengths in resonance with the first charge-transfer/proton-transfer (CT/PT) band absorption. These spectra indicate that the Franck-Condon region photodissociation dynamics have multidimensional character with motion predominantly along the nominal C=CH in-plane bend+ring deformation modes (nu9, nu10, nu14, nu16, nu18, nu19, nu20, nu26, nu30, nu31, and nu35) accompanied by a smaller amount of motion along the nominal C=O stretch mode (nu7), the nominal C=C-C(=O) in-plane bend modes (nu33 and nu37), and the nominal ring C-O-H in-plane bend modes (nu9 and nu14). A preliminary resonance Raman intensity analysis was done, and these results for the OHBA molecule were compared to results previously reported for the 2-hydroxyacetophenone (OHAP) molecule.

View Article and Find Full Text PDF

Resonance Raman spectra were obtained for (E)-beta-nitrostyrene in cyclohexane solution with excitation wavelengths in resonance with the charge transfer (CT)-band absorption spectrum. These spectra indicate that the Franck-Condon region photodissociation dynamics have multidimensional character with motion predominantly along the nominal NO(2) symmetric stretch mode (nu(14)), the nominal C=C stretch mode (nu(8)), the nominal benzene ring stretch mode (nu(9)), accompanied by a smaller amount of motion along the nominal ONO symmetric bend/benzene ring stretch mode (nu(34)), the nominal CCH in-plane bending mode (nu(20)), the nominal HC=CH in-plane bending mode (nu(18)), the nominal NO(2) asymmetric stretch mode (nu(11)), the nominal C-N stretch/benzene ring breathing mode (nu(27)), and the nominal CCC trigonal bending mode (nu(25)). A preliminary resonance Raman intensity analysis was done and these results for (E)-beta-nitrostyrene were compared to results previously reported for several nitrobenzene and trans-stilbene compounds.

View Article and Find Full Text PDF

Auxin response factors (ARFs) are transcription factors that bind with specificity to TGTCTC-containing auxin response elements (AuxREs) found in promoters of primary/early auxin response genes and mediate responses to the plant hormone auxin. The ARF genes are represented by a large multigene family in plants. A comprehensive genome-wide analysis was carried out in this study to find all ARFs in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa subsp.

View Article and Find Full Text PDF

Resonance Raman spectra were obtained for 2-nitrophenol in cyclohexane solution with excitation wavelengths in resonance with the charge-transfer (CT) proton transfer band absorption. These spectra indicate that the Franck-Condon region photodissociation dynamics have multidimensional character with motion along more than 15 normal modes: the nominal CCH bend+CC stretch nu(12) (1326 cm(-1)), the nominal CCC bend nu(23) (564 cm(-1)), the nominal CO stretch+NO stretch+CC stretch nu(14) (1250 cm(-1)), the nominal CCH bend+CC stretch+COH bend nu(15) (1190 cm(-1)); the nominal CCH bend+CC stretch nu(17) (1134 cm(-1)), the nominal CCC bend+CC stretch nu(22) (669 cm(-1)), the nominal CCN bend nu(27) (290 cm(-1)), the nominal NO(2) bend+CC stretch nu(21) (820 cm(-1)), the nominal CCO bend+CNO bend nu(25) (428 cm(-1)), the nominal CC stretch nu(7) (1590 cm(-1)), the nominal NO stretch nu(8) (1538 cm(-1)), the nominal CCC bend+NO(2) bend nu(20) (870 cm(-1)), the nominal CC stretch nu(6) (1617 cm(-1)), the nominal COH bend+CC stretch nu(11) (1382 cm(-1)), nominal CCH bend+CC stretch nu(9) (1472 cm(-1)). A preliminary resonance Raman intensity analysis was done and the results for 2-nitrophenol were compared to previously reported results for nitrobenzene, p-nitroaniline, and 2-hydroxyacetophenone.

View Article and Find Full Text PDF

The direct hydrogen abstraction reactions of Cl atom with SiH(n)Cl(4-n) (n=1,2,3,4) have been studied systematically using ab initio molecular orbital theory. Geometries have been optimized at the MP2 level with 6-311+G(d) basis set, QCISD(T)/6-311+G(d,p) has been used in the final single point energy calculation. The kinetic calculations of these reactions have been explored using the canonical variational transition (CVT) state theory method with small-curvature tunneling (SCT) effect correction over the temperature range of 200-2000 K.

View Article and Find Full Text PDF