Background: Pituitary adenylate cyclase-activating polypeptide PACAP) 38 is an endogenous neuropeptide with diverse functions, notably its critical role in inhibiting tumor proliferation. Radiotherapy is an important step in the standard treatment modality of many tumors. Combining radiotherapy with therapeutic agents represents a new and promising trend aimed at enhancing radiation sensitivity and improving tumor treatment efficacy.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most common and deadly tumor in the central nervous system. Although much has been done to optimize treatment options for GBM, the clinical prognosis is still very poor. The recent development of organoid models are emerging as cutting-edge tools in GBM research.
View Article and Find Full Text PDFMounting evidence supports the role of neuroinflammation in radiation-induced brain injury (RIBI), a chronic disease characterized by delayed and progressive neurological impairment. Asparagine endopeptidase (AEP), also known as legumain (LGMN), participates in multiple malignancies and neurodegenerative diseases and may potentially be involved in RIBI. Here, we found AEP expression was substantially elevated in the cortex and hippocampus of wild-type () mice following whole-brain irradiation.
View Article and Find Full Text PDFOxygen and nutrient deprivation are common features of solid tumors. Although abnormal alternative splicing (AS) has been found to be an important driving force in tumor pathogenesis and progression, the regulatory mechanisms of AS that underly the adaptation of cancer cells to harsh microenvironments remain unclear. Here, we found that hypoxia- and nutrient deprivation-induced asparagine endopeptidase (AEP) specifically cleaved DDX3X in a HIF1A-dependent manner.
View Article and Find Full Text PDFInvestigations of protein-protein interactions (PPIs) are of paramount importance for comprehending cellular processes within biological systems. The bimolecular fluorescence complementation (BiFC) assay presents a convenient methodology for visualizing PPIs within live cells. While a range of fluorescent proteins have been introduced into the BiFC system, there is a growing demand for new fluorescent proteins to accommodate the expanding requirements of researchers.
View Article and Find Full Text PDFJ Appl Clin Med Phys
November 2022
Introduction: To explore and evaluate the performance of MRI-based brain tumor super-resolution generative adversarial network (MRBT-SR-GAN) for improving the MRI image resolution in brain tumors.
Methods: A total of 237 patients from December 2018 and April 2020 with T2-fluid attenuated inversion recovery (FLAIR) MR images (one image per patient) were included in the present research to form the super-resolution MR dataset. The MRBT-SR-GAN was modified from the enhanced super-resolution generative adversarial networks (ESRGAN) architecture, which could effectively recover high-resolution MRI images while retaining the quality of the images.
Background: Abnormal proliferation and migration of cells are hallmarks of cancer initiation and malignancy. Asparagine endopeptidase (AEP) has specific substrate cleavage ability and plays a pro-cancer role in a variety of cancers. However, the underlying mechanism of AEP in cancer proliferation and migration still remains unclear.
View Article and Find Full Text PDFGlioblastoma is a rare yet lethal type of tumor that poses a crucible for the medical profession, owing to its rapid proliferation and invasion resulting in poor prognosis. Circular RNAs (circRNAs), a subclass of regulatory RNAs, are implicated in the regulation of cancerous progression. This study aims to investigate the roles and underlying mechanism of circPIK3C2A in regulating proliferation and invasion of glioblastoma.
View Article and Find Full Text PDFObjective: The aim of this study was to establish a nomogram model for predicting the risk of short-term recurrence in glioma patients.
Methods: The clinical data of recurrent glioma patients were summarized and analyzed in this study. Univariate and multivariate logistic regression analyses were performed to analyze the correlation between clinical data and the risk of short-term recurrence after operation.
Glioblastoma (GBM) is one of the most devastating cancers and is characterized by rapid cell proliferation and aggressive invasiveness. Legumain (LGMN), a substrate-specific protease, is associated with poor progression of GBM. Circular RNAs (circRNAs) are aberrantly expressed in various cancers and play crucial roles in tumor progression; however, the functional roles of circRNAs originating from LGMN remain largely unknown in GBM.
View Article and Find Full Text PDFPseudogenes, which are long noncoding RNAs that originate from protein-coding genes, have been suggested to play important roles in disease. Although studies have revealed high expression of legumain (LGMN) in many types of tumors, the regulation of LGMN remains largely unknown. Here, we found that a novel LGMN pseudogene (LGMNP1) was upregulated in glioblastoma (GBM) tissues and high LGMNP1 expression in GBM cells enhanced proliferation and invasion.
View Article and Find Full Text PDFMol Ther Nucleic Acids
December 2019
Zinc fingers and homeoboxes 1 (ZHX1) is a transcription repressor that has been implicated in the tumorigenesis and progression of diverse tumors. The functional role and regulating mechanism of ZHX1 has not been elucidated in glioblastoma (GBM). Previous reports have suggested that a large number of non-coding RNAs play a vital role in glioma initiation and progression.
View Article and Find Full Text PDFBackground: Isocitrate dehydrogenase wild-type (WT) glioblastoma (GBM) accounts for 90% of all GBMs, yet only 27% of isocitrate dehydrogenase WT-GBMs have p53 mutations. However, the tumor surveillance function of WT-p53 in GBM is subverted by mechanisms that are not fully understood.
Methods: We investigated the proteolytic inactivation of WT-p53 by asparaginyl endopeptidase (AEP) and its effects on GBM progression in cancer cells, murine models, and patients' specimens using biochemical and functional assays.
Int J Biol Sci
February 2020
Ubiquitin-specific protease 17 (USP17), a novel member of deubiquitinase, is reported to play essential roles in several solid tumors. However, the expression and function of USP17 in breast cancer tumorigenesis remains ambiguity. Here we found that the mRNA level of USP17 was lower in breast cancer tissues than normal tissues.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) play vital roles in the pathobiology of glioblastoma multiforme (GBM). Though radiotherapy remains the most effective component of multiple therapies for patients with GBM, lncRNAs conferring GBM radioresistance are less unknown. Here, the present study identified that the antisense transcript of hypoxia-inducible factor-1α (AHIF) was upregulated in GBM cells after radiotherapy.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) has the highest mortality rate among patients with brain tumors, and radiotherapy forms an important part of its treatment. Thus, there is an urgent requirement to elucidate the mechanisms conferring GBM progression and radioresistance. In the present study, it was identified that antisense transcript of hypoxia‑inducible factor‑1α (AHIF) was significantly upregulated in GBM cancerous tissues, as well as in radioresistant GBM cells.
View Article and Find Full Text PDFNeurocutaneous melanosis (NCM) is a rare congenital syndrome characterized by the presence of multiple congenital melanocytic nevi and the proliferation of melanocytes in the central nervous system. The authors present a 9-year-old Chinese boy whose clinical manifestations are intermittent headache for 2 months and persistent abdominal pain for 10 days. 3D-reconstruction computed tomography angiography image, digital subtraction angiography, and magnetic resonance imaging plus angiography (MRI+MRA) examinations results suggested that cavernoma at left frontal lobe potentially associated with hemorrhage.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small noncoding RNAs that negatively regulate protein biosynthesis and participate in the pathogenesis of various tumours. Previous studies have shown that miR-210 is highly expressed in different types of human cancers, including glioblastoma multiforme (GBM). However, the role that miR-210 plays in GBM remains unclear.
View Article and Find Full Text PDFMicroRNA-128 is down-regulated in glioma tissues, which regulates cell proliferation, self-renewal, apoptosis, angiogenesis and differentiation. This study aims at investigating the diagnostic value of serum miR-128 in human glioma. Real-time quantitative reverse transcriptase polymerase chain reaction was used to detect the expression levels of miR-128 in serum samples from 151 glioma patients, 59 postoperative patients, 52 meningioma patients and 53 normal donors.
View Article and Find Full Text PDFMicroRNA-155 is highly expressed in many malignant tumors with poor prognosis, which regulates cell apoptosis, proliferation, invasion, metastasis, tumor angiogenesis, and metabolism. This study aims at investigating the clinical significance of miR-155 expression in human gliomas. Real-time quantitative PCR was used to detect the expression levels of miR-155 in 131 glioma and 16 normal brain tissues.
View Article and Find Full Text PDF