A major current challenge in the field of structured light represents the development from three- (3d) to four-dimensional (4d) electric field structures, in which one exploits the transverse as well as longitudinal field components in 3d space. For this purpose, non-paraxial fields are required in order to be able to access visionary 3d topological structures as optical cones, ribbons and Möbius strips formed by 3d polarization states. We numerically demonstrate the customization of such complex topological structures by controlling generic polarization singularities in non-paraxial light fields.
View Article and Find Full Text PDFRecently, four-dimensional (4D) functional nano-materials have attracted considerable attention due to their impact in cutting-edge fields such as nano-(opto)electronics, -biotechnology or -biomedicine. Prominent optical functionalizations, representing the fourth dimension, require precisely tailored light fields for its optimal implementation. These fields need to be like-wise 4D, i.
View Article and Find Full Text PDFVector beams are of major importance to tailor tightly focused fields by creating an additional z-polarization component. Till now, mainly focusing properties of fundamental vector beams have been investigated, whereas the knowledge of focused higher-order singular vector fields is still missing. We fill this gap by numerical analysis of these fields, applying their attractive characteristics as including a spatially adjustable amount of radial and azimuthal components.
View Article and Find Full Text PDF