The elevated level of replication stress is an intrinsic characteristic of cancer cells. Targeting the mechanisms that maintain genome stability to further increase replication stress and thus induce severe genome instability has become a promising approach for cancer treatment. Here, we identify histone deacetylase 8 (HDAC8) as a drug target whose inactivation synergized with the inhibition of checkpoint kinases to elicit substantial replication stress and compromise genome integrity selectively in cancer cells.
View Article and Find Full Text PDFPrecedential evidence ascertaining the overexpression of LSD1 and HDACs in colorectal cancer spurred us to design a series of dual LSD1-HDAC inhibitors. Capitalizing on the modular nature of the three-component HDAC inhibitory model, tranylcypromine as a surface recognition motif was appended to zinc-binding motifs via diverse linkers. A compendium of hydroxamic acids was generated and evaluated for cytotoxicity against HCT-116 cells (human colorectal cancer cell lines).
View Article and Find Full Text PDFThe rational installation of pharmacophores targeting HSP90 and LSD1 axes has achieved significant anti-cancer capacity in prostate and colorectal cancer. Among the series of hybrids, inhibitor 6 exhibited remarkable anti-proliferative activity against prostate cancer cell lines PC-3 and DU145, with GI values of 0.24 and 0.
View Article and Find Full Text PDFNotch signaling is aberrantly activated in approximately 30% of hepatocellular carcinoma (HCC), significantly contributing to tumorigenesis and disease progression. Expression of the major Notch receptor, NOTCH1, is upregulated in HCC cells and correlates with advanced disease stages, although the molecular mechanisms underlying its overexpression remain unclear. Here, we report that expression of the intracellular domain of NOTCH1 (NICD1) is upregulated in HCC cells due to antagonism between the E3-ubiquitin ligase F-box/WD repeat-containing protein 7 (FBXW7) and the large scaffold protein abnormal spindle-like microcephaly-associated protein (ASPM) isoform 1 (ASPM-i1).
View Article and Find Full Text PDFDespite recent advances in molecularly targeted therapies and immunotherapies, the effective treatment of advanced-stage cancers remains a largely unmet clinical need. Identifying driver mechanisms of cancer aggressiveness can lay the groundwork for the development of breakthrough therapeutic strategies. Assembly factor for spindle microtubules (ASPM) was initially identified as a centrosomal protein that regulates neurogenesis and brain size.
View Article and Find Full Text PDFUnlabelled: Small cell lung cancer (SCLC) is among the most aggressive and lethal human malignancies. Most patients with SCLC who initially respond to chemotherapy develop disease relapse. Therefore, there is a pressing need to identify novel driver mechanisms of SCLC progression to unlock treatment strategies to improve patient prognosis.
View Article and Find Full Text PDFResistance to antitumor treatment contributes to patient mortality. Functional proteomic screening of organoids derived from chemotherapy-treated patients with breast cancer identified nuclear receptor corepressor 2 (NCOR2) histone deacetylase as an inhibitor of cytotoxic stress response and antitumor immunity. High NCOR2 in the tumors of patients with breast cancer predicted chemotherapy refractoriness, tumor recurrence and poor prognosis.
View Article and Find Full Text PDFIntroduction: Stem-like cancer cells or cancer stem cells (CSCs) may comprise a phenotypically and functionally heterogeneous subset of cells, whereas the molecular markers reflecting this CSC hierarchy remain elusive. The glycolytic enzyme alpha-enolase (ENO1) present on the surface of malignant tumor cells has been identified as a metastasis-promoting factor through its function of activating plasminogen. The expression pattern of surface ENO1 (sENO1) concerning cell-to-cell or CSC heterogeneity and its functional roles await further investigation.
View Article and Find Full Text PDFBackground: Gastric cancer (GC) is the third leading cause of cancer mortality globally and a molecularly heterogeneous disease. Identifying the driver pathways in GC progression is crucial to improving the clinical outcome. Recent studies identified ASPM (abnormal spindle-like microcephaly-associated) and FOXM1 (Forkhead box protein M1) as novel Wnt and cancer stem cell (CSC) regulators; their pathogenetic roles and potential crosstalks in GC remain unclarified.
View Article and Find Full Text PDFThe global 2019 novel coronavirus disease (COVID-19) pandemic has had devastating effects not only on healthcare systems worldwide but also on different aspects of the care provided to nursing home residents. Dysphagia management is a crucial component of the care provided to many nursing home residents. This article presents the dysphagia management strategies applied in Hong Kong during the COVID-19 pandemic and the related experiences.
View Article and Find Full Text PDFVarious populations of cancer stem cells (CSCs) have been identified in hepatocellular carcinoma (HCC). Wnt signaling is variably activated in HCC and regulates CSCs and tumorigenesis. We explored cell-to-cell Wnt and stemness heterogeneity in HCC by labeling freshly isolated cancer cells with a Wnt-specific reporter, thereby identifying a small subset (0.
View Article and Find Full Text PDFOur three-dimensional organotypic culture revealed that human histone demethylase (KDM) 4C, a histone lysine demethylase, hindered the acini morphogenesis of RWPE-1 prostate cells, suggesting its potential oncogenic role. Knockdown (KD) of KDM4C suppressed cell proliferation, soft agar colony formation, and androgen receptor (AR) transcriptional activity in PCa cells as well as reduced tumor growth of human PCa cells in zebrafish xenotransplantation assay. Micro-Western array (MWA) analysis indicated that KD of KDM4C protein decreased the phosphorylation of AKT, c-Myc, AR, mTOR, PDK1, phospho-PDK1 S241, KDM8, and proteins involved in cell cycle regulators, while it increased the expression of PTEN.
View Article and Find Full Text PDFBackground: This phase I/II study evaluated the feasibility and efficacy of S-1, leucovorin, oxaliplatin and gemcitabine (SLOG), a triplet regimen, for treating patients with metastatic pancreatic ductal adenocarcinoma (PDAC).
Methods: Patients with chemo-naive, metastatic PDAC were eligible to receive fixed-rate infusion (10 mg/m/min) of gemcitabine of 800 mg/m followed by oxaliplatin of 85 mg/m on day 1 plus oral S-1 and leucovorin (20 mg/m) twice daily from days 1 to 7 in a 2-week cycle. The dose of S-1 would be escalated from 20, 30, 35 to 40 mg/m2 in a 3 + 3 designed phase I part to determine the maximum tolerated dose (MTD) for phase II study, in which the primary end-point was objective response rate (ORR).
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and treatment-resistant malignancy. The lack of pathway-informed biomarkers hampers the development of rational diagnostics or therapies. Recently, the protein abnormal spindle-like microcephaly-associated (ASPM) was identified as a novel Wnt and stemness regulator in PDAC, while the pathogenic roles of its protein isoforms remain unclarified.
View Article and Find Full Text PDFMalignant tumors are highly heterogeneous and likely contain a subset of cancer cells termed cancer stem cells (CSCs). CSCs exist in a dynamic equilibrium with their microenvironments and the CSC phenotype is tightly regulated by both cell-intrinsic and cell-extrinsic factors including those derived from their surrounding cells or stroma. Many human solid tumors like breast, lung, colorectal and pancreatic cancers are characterized by a pronounced stromal reaction termed "the desmoplastic response.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are multipotent stem cells derived from the mesoderm that give rise to several mesenchymal lineages, including osteoblasts, adipocytes, chondrocytes and myocytes. Their potent ability to home to tumors coupled with their differentiation potential and immunosuppressive function positions MSCs as key regulators of tumor fate. Here we review the existing knowledge on the involvement of MSCs in multiple tumor-promoting processes, including angiogenesis, epithelial-mesenchymal transition, metastasis, immunosuppression and therapy resistance.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is a devastating and highly aggressive malignancy. Existing therapeutic strategies only provide a small survival benefit in patients with PDAC. Laboratory and clinical research have identified various populations of stem-cell-like cancer cells or cancer stem cells (CSCs) as the driving force of PDAC progression, treatment-resistance, and metastasis.
View Article and Find Full Text PDFIn the published version of this paper the author Shu-Pin Huang's surname was incorrectly given as Hwang instead of Huang. This has now been corrected in the HTML and PDF versions of the paper.
View Article and Find Full Text PDFRecurrent and hormone-refractory prostate cancer (PCA) exhibits aggressive behaviors while current therapeutic approaches show little effect of prolonging the survival of patients with PCA. Thus, a deeper understanding of the patho-molecular mechanisms underlying the disease progression in PCA is crucial to identify novel diagnostic and/or therapeutic targets to improve the outcome of patients. Recent evidence suggests that activation of Wnt signaling in cancer stem cells (CSCs) contributes to cancer progression in malignant tumors.
View Article and Find Full Text PDFIt has been suggested that stress stimuli from the microenvironment maintain a subset of tumor cells with stem-like properties, including drug resistance. Here, we investigate whether Sp1, a stress-responsive factor, regulates stemness gene expression and if its inhibition sensitizes cancer cells to chemotherapy. Hydrogen peroxide- and serum deprivation-induced stresses were performed in glioblastoma (GBM) cells and patient-derived cells, and the effect of the Sp1 inhibitor mithramycin A (MA) on these stress-induced stem cells and temozolomide (TMZ)-resistant cells was evaluated.
View Article and Find Full Text PDFMetronomic chemotherapy (MC) was initially described as an antiangiogenic therapy more than 15 years ago. Over the past few years, additional data have highlighted the impact of MC on the microenvironment beyond angiogenesis, with, most importantly, a potential impact on the immune system. Here, we review and reappraise the fact that MC might be able to directly kill cancer cells.
View Article and Find Full Text PDF