Publications by authors named "Kelvin C Luk"

The transmission of tau pathology has been proposed as one of the major mechanisms for the spatiotemporal spreading of tau pathology in neurodegenerative diseases. Over the last decade, studies have demonstrated that targeting total or pathological tau using tau antibodies can mitigate the development of tau pathology in tauopathy or Alzheimer's disease (AD) mouse models, and multiple tau immunotherapy agents have progressed to clinical trials. Tau antibodies are believed to inhibit the internalization of pathologic seeds and/or block seed elongation after seed internalization.

View Article and Find Full Text PDF
Article Synopsis
  • Microglia are immune cells in the brain that help maintain cellular health, but they might malfunction in Parkinson's disease (PD), particularly in relation to alpha-synuclein (αSyn) aggregation, which is a key feature of the disease.
  • Research using human induced pluripotent stem cells showed that when microglia are exposed to both alpha-synuclein fibrils and inflammatory signals, it disrupts their ability to effectively manage and clear these aggregates.
  • The study highlights that this model is useful for understanding microglial functioning in PD and reveals how inflammation affects their processing of alpha-synuclein, possibly worsening the disease state.
View Article and Find Full Text PDF

Lewy body disorders are heterogeneous neurological conditions defined by intracellular inclusions composed of misshapen α-synuclein protein aggregates. Although α-synuclein aggregates are only one component of inclusions and not strictly coupled to neurodegeneration, evidence suggests they seed the propagation of Lewy pathology within and across cells. Genetic mutations, genomic multiplications, and sequence polymorphisms of the gene encoding α-synuclein are also causally linked to Lewy body disease.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates protein-rich inclusions in neurodegeneration, noting that current iPSC models lack reproducibility and speed in developing these inclusions.
  • Researchers created new iPSC models that allow for rapid production of CNS cells with proteins prone to aggregation, enabling the tracking of inclusions at a single level.
  • They identified various inclusion types with differing effects on neuron survival and isolated proteins that could influence toxicity, paving the way for improved drug development for neurodegenerative diseases.
View Article and Find Full Text PDF

 Pre-formed fibrils (PFFs) made from recombinant α-synuclein are broadly used throughout the field in cellular and animal models of Parkinson's disease. However, their ability to successfully recapitulate disease biology is a controversial topic. In this article, two researchers debate this issue with Amanda Woerman taking the view that PFFs are a model of synucleinopathy but not Parkinson's disease, while Kelvin Luk defends their use as an important tool in the field.

View Article and Find Full Text PDF

The synucleinopathies are a diverse group of neurodegenerative disorders characterized by the accumulation of aggregated alpha-synuclein (aSyn) in vulnerable populations of brain cells. Oxidative stress is both a cause and a consequence of aSyn aggregation in the synucleinopathies; however, noninvasive methods for detecting oxidative stress in living animals have proven elusive. In this study, we used the reactive oxygen species (ROS)-sensitive positron emission tomography (PET) radiotracer [F]ROStrace to detect increases in oxidative stress in the widely-used A53T mouse model of synucleinopathy.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by the presence of proteinaceous alpha-synuclein (α-syn) inclusions (Lewy bodies), markers of neuroinflammation and the progressive loss of nigrostriatal dopamine (DA) neurons. These pathological features can be recapitulated in vivo using the α-syn preformed fibril (PFF) model of synucleinopathy. We have previously determined that microglia proximal to PFF-induced nigral α-syn inclusions increase in soma size, upregulate major-histocompatibility complex-II (MHC-II) expression, and increase expression of a suite of inflammation-associated transcripts.

View Article and Find Full Text PDF

Alpha-synuclein (αSyn) aggregation and the formation of Lewy pathology (LP) is a foundational pathophysiological phenomenon in synucleinopathies. Delivering therapeutic single-chain and single-domain antibodies that bind pathogenic targets can disrupt intracellular aggregation. The fusion of antibody fragments to a negatively-charged proteasomal targeting motif (PEST) creates bifunctional constructs that enhance both solubility and turnover.

View Article and Find Full Text PDF

Inclusions comprised of microtubule-associated protein tau (tau) are implicated in a group of neurodegenerative diseases, collectively known as tauopathies, that include Alzheimer's disease (AD). The spreading of misfolded tau "seeds" along neuronal networks is thought to play a crucial role in the progression of tau pathology. Consequently, restricting the release or uptake of tau seeds may inhibit the spread of tau pathology and potentially halt the advancement of the disease.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by the accumulation of misfolded alpha-synuclein (α-syn) protein, forming intraneuronal Lewy body (LB) inclusions. The α-syn preformed fibril (PFF) model of PD recapitulates α-syn aggregation, progressive nigrostriatal degeneration and motor dysfunction; however, little is known about the time course of PFF-induced alterations in basal and evoked dopamine (DA). In vivo microdialysis is well suited for identifying small changes in neurotransmitter levels over extended periods.

View Article and Find Full Text PDF

Amyloid-forming proteins such α-synuclein and tau, which are implicated in Alzheimer's and Parkinson's disease, can form different fibril structures or strains with distinct toxic properties, seeding activities and pathology. Understanding the determinants contributing to the formation of different amyloid features could open new avenues for developing disease-specific diagnostics and therapies. Here we report that O-GlcNAc modification of α-synuclein monomers results in the formation of amyloid fibril with distinct core structure, as revealed by cryogenic electron microscopy, and diminished seeding activity in seeding-based neuronal and rodent models of Parkinson's disease.

View Article and Find Full Text PDF

Objective: Alzheimer's disease neuropathologic change and alpha-synucleinopathy commonly co-exist and contribute to the clinical heterogeneity of dementia. Here, we examined tau epitopes marking various stages of tangle maturation to test the hypotheses that tau maturation is more strongly associated with beta-amyloid compared to alpha-synuclein, and within the context of mixed pathology, mature tau is linked to Alzheimer's disease clinical phenotype and negatively associated with Lewy body dementia.

Methods: We used digital histology to measure percent area-occupied by pathology in cortical regions among individuals with pure Alzheimer's disease neuropathologic change, pure alpha-synucleinopathy, and a co-pathology group with both Alzheimer's and alpha-synuclein pathologic diagnoses.

View Article and Find Full Text PDF

Parkinson's disease (PD) pathology is characterized by alpha-synuclein (α-syn) aggregates, degeneration of dopamine neurons in the substantia nigra pars compacta (SNpc), and neuroinflammation. The presence of reactive glia correlates with deposition of pathological α-syn in early-stage PD. Thus, understanding the neuroinflammatory response of microglia and astrocytes to synucleinopathy may identify therapeutic targets.

View Article and Find Full Text PDF
Article Synopsis
  • - Understanding the early phases of synucleinopathy, particularly before neurodegeneration occurs, is crucial for developing therapies and studying disease progression, as shown in a rat model that mimics Parkinson's disease pathology.
  • - In the study, researchers utilized laser capture microdissection and RNA sequencing to identify transcriptional changes in the substantia nigra, revealing that immune response-related transcripts increase while neurotransmission and dopamine pathway-related transcripts decrease during early synucleinopathy.
  • - Verification of 29 specific transcripts associated with neurotransmission and dopamine pathways was conducted and findings indicated that decreases in transcripts like Syt1 and Slc6a3 were present in neurons with pSyn inclusions, shedding light on the molecular mechanisms that may drive
View Article and Find Full Text PDF

The existent pre-clinical models of Parkinson's disease do not simultaneously recapitulate severe degeneration of dopamine neurons and the occurrence of alpha-synuclein (aSyn) aggregation in one study system. In this study, we injected aSyn pre-formed fibrils (PFF) and 6-hydroxydopamine (6-OHDA) unilaterally into the striatum of C57BL/6 wild-type male mice at an interval of 2 weeks to induce aggregation of aSyn protein and trigger the loss of dopamine neurons simultaneously in one model and studied the behavioural effects of the combination in these mice. 6-OHDA was tested at three different doses, and 2 μg of 6-OHDA combined with PFF-induced aSyn aggregation was found to produce the most optimal disease phenotype.

View Article and Find Full Text PDF

Extraction of α-Synuclein (αSyn) aggregates from Lewy body disease (LBD) brains has been widely described yet templated fibrillization of LB-αSyn often fails to propagate its structural and functional properties. We recently demonstrated that aggregates amplified from LB-αSyn (ampLB) show distinct biological activities in vitro compared to human αSyn preformed fibrils (hPFF) formed de novo. Here we compare the in vivo biological activities of hPFF and ampLB regarding seeding activity, latency in inducing pathology, distribution of pathology, inclusion morphology, and cell-type preference.

View Article and Find Full Text PDF

Abnormal α-synuclein (α-syn) aggregation characterizes α-synucleinopathies, including Parkinson's disease (PD) and multiple system atrophy (MSA). However, no suitable positron emission tomography (PET) radiotracer for imaging α-syn in PD and MSA exists currently. Our structure-activity relationship studies identified 4-methoxy--(4-(3-(pyridin-2-yl)-3,8-diazabicyclo[3.

View Article and Find Full Text PDF
Article Synopsis
  • Parkinson's disease (PD) is rapidly increasing globally, especially in industrialized regions, indicating potential environmental influences, specifically from pollutants like dieldrin, a pesticide.
  • Research on mice reveals that exposure to dieldrin during development makes them more vulnerable to neuron damage and motor function deficits when exposed to α-synuclein, a protein linked to PD.
  • The study shows that while dieldrin exposure increases dopamine release in certain brain areas affected by α-synuclein, it doesn't change VMAT2 activity, suggesting that early exposure to dieldrin may heighten the brain's response to neurodegeneration without obvious signs of damage.
View Article and Find Full Text PDF

Reactive microglia are observed with aging and in Lewy body disorders, including within the olfactory bulb of men with Parkinson's disease. However, the functional impact of microglia in these disorders is still debated. Resetting these reactive cells by a brief dietary pulse of the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 may hold therapeutic potential against Lewy-related pathologies.

View Article and Find Full Text PDF

The process of amyloid fibril formation remains one of the primary targets for developing diagnostics and treatments for several neurodegenerative diseases (NDDs). Amyloid-forming proteins such α-Synuclein and Tau, which are implicated in the pathogenesis of Alzheimer's and Parkinson's disease, can form different types of fibril structure, or strains, that exhibit distinct structures, toxic properties, seeding activities, and pathology spreading patterns in the brain. Therefore, understanding the molecular and structural determinants contributing to the formation of different amyloid strains or their distinct features could open new avenues for developing disease-specific diagnostics and therapies.

View Article and Find Full Text PDF

Many risk loci for Parkinson's disease (PD) have been identified by genome-wide association studies (GWASs), but target genes and mechanisms remain largely unknown. We linked the GWAS-derived chromosome 7 locus (sentinel single-nucleotide polymorphism rs199347) to through colocalization analyses of expression quantitative trait locus and PD risk signals, confirmed by allele-specific expression studies in the human brain. In cells, glycoprotein nonmetastatic melanoma protein B (GPNMB) coimmunoprecipitated and colocalized with α-synuclein (aSyn).

View Article and Find Full Text PDF

Aims: It has long been considered that accumulation of pathological alpha-synuclein (aSyn) leads to synaptic/neuronal loss which then results in behavioural and cognitive dysfunction. To investigate this claim, we investigated effects downstream of aSyn preformed fibrils (PFFs) and 6-hydroxydopamine (6-OHDA), because aSyn PFFs induce spreading/accumulation of aSyn, and 6-OHDA rapidly causes local neuronal loss.

Methods: We injected mouse aSyn PFFs into the medial forebrain bundle (MFB) of Sprague-Dawley rats.

View Article and Find Full Text PDF

Lewy body disorders are characterized by oxidative damage to DNA and inclusions rich in aggregated forms of α-synuclein. Among other roles, apurinic/apyrimidinic endonuclease 1 (APE1) repairs oxidative DNA damage, and APE1 polymorphisms have been linked to cases of Lewy body disorders. However, the link between APE1 and α-synuclein is unexplored.

View Article and Find Full Text PDF