Publications by authors named "Kelum A A Gamage"

Time synchronization is vital for accurate data collection and processing in sensor networks. Sensors in these networks often operate under fluctuating conditions. However, an accurate timekeeping mechanism is critical even in varying network conditions.

View Article and Find Full Text PDF

One of the most critical concerns in power system reliability is the timely and accurate detection of transmission line faults. Therefore, accurate detection and localisation of these faults are necessary to avert system collapse. This paper focuses on using Artificial Neural Networks in faults detection and localisation to attain accuracy, precision and speed of execution.

View Article and Find Full Text PDF

This paper proposes a new hybrid framework for short-term load forecasting (STLF) by combining the Feature Engineering (FE) and Bayesian Optimization (BO) algorithms with a Bayesian Neural Network (BNN). The FE module comprises feature selection and extraction phases. Firstly, by merging the Random Forest (RaF) and Relief-F (ReF) algorithms, we developed a hybrid feature selector based on grey correlation analysis (GCA) to eliminate feature redundancy.

View Article and Find Full Text PDF

The in-situ characterisation of strontium-90 contamination of groundwater at nuclear decommissioning sites would represent a novel and cost-saving technology for the nuclear industry. However, beta particles are emitted over a continuous spectrum and it is difficult identify radionuclides due to the overlap of their spectra and the lack of characteristic features. This can be resolved by using predictive modelling to perform a maximum-likelihood estimation of the radionuclides present in a beta spectrum obtained with a semiconductor detector.

View Article and Find Full Text PDF

Personal values play a significant role when adopting learning approaches by individuals during their studies. Particularly in higher education, these values significantly influence the character that individuals play within their learning community and ultimately influence their academic achievements. The purpose of this paper is to investigate personal values in their choice of learning approaches and, subsequently, how it impacts one's academic achievements.

View Article and Find Full Text PDF

This paper examines the potential deployment of a 10 mm × 10 mm × 1 mm cadmium telluride detector for strontium-90 measurement in groundwater boreholes at nuclear decommissioning sites. Geant4 simulation was used to model the deployment of the detector in a borehole monitoring contaminated groundwater. It was found that the detector was sensitive to strontium-90, yttrium-90, caesium-137, and potassium-40 decay, some of the significant beta emitters found at Sellafield.

View Article and Find Full Text PDF

The characterisation of buried radioactive wastes is challenging because they are not readily accessible. Therefore, this study reports on the development of a method for integrating ground-penetrating radar (GPR) and gamma-ray detector measurements for nonintrusive characterisation of buried radioactive objects. The method makes use of the density relationship between soil permittivity models and the flux measured by gamma ray detectors to estimate the soil density, depth and radius of a disk-shaped buried radioactive object simultaneously.

View Article and Find Full Text PDF

Due to the short path length of alpha particles in air, a detector that can be used at a distance from any potential radiological contamination reduces the time and hazard that traditional alpha detection methods incur. This would reduce costs and protect personnel in nuclear power generation and decommissioning activities, where alpha detection is crucial to full characterisation and contamination detection. Stand-off alpha detection could potentially be achieved by the detection of alpha-induced radioluminescence, especially in the ultraviolet C (UVC) wavelength range (180⁻280 nm) where natural and artificial background lighting is less likely to interfere with detection.

View Article and Find Full Text PDF

In many field applications where alpha-induced radioluminescence (or so-called UV fluorescence) could potentially be used for stand-off detection of alpha-emitting materials, it may not be possible to create a fully purged gas atmosphere. Hence, an alternative gas delivery method to utilise the radioluminescence enhancing properties of gases has been investigated, with the novel results from this presented herewithin. A solar blind ultraviolet C (UVC) sensor (UVTron R9533, Hamamatsu, Japan) has been used to detect changes in the signal in the UVC wavelength range (180⁻280 nm), where gases of Ar, Xe, Ne, N₂, Kr, and P-10 were flowed over a 6.

View Article and Find Full Text PDF

This paper presents the results of an attenuation model for remote depth estimation of buried radioactive wastes using a Cadmium Zinc Telluride (CZT) detector. Previous research using an organic liquid scintillator detector system showed that the model is able to estimate the depth of a 329-kBq Cs-137 radioactive source buried up to 12 cm in sand with an average count rate of 100 cps. The results presented in this paper showed that the use of the CZT detector extended the maximum detectable depth of the same radioactive source to 18 cm in sand with a significantly lower average count rate of 14 cps.

View Article and Find Full Text PDF

The United Kingdom (UK) has a significant legacy of nuclear installations to be decommissioned over the next 100 years and a thorough characterisation is required prior to the development of a detailed decommissioning plan. Alpha radiation detection is notoriously time consuming and difficult to carry out due to the short range of alpha particles in air. Long-range detection of alpha particles is therefore highly desirable and this has been attempted through the detection of secondary effects from alpha radiation, most notably the air-radioluminescence caused by ionisation.

View Article and Find Full Text PDF

Existing remote radioactive contamination depth estimation methods for buried radioactive wastes are either limited to less than 2 cm or are based on empirical models that require foreknowledge of the maximum penetrable depth of the contamination. These severely limits their usefulness in some real life subsurface contamination scenarios. Therefore, this work presents a novel remote depth estimation method that is based on an approximate three-dimensional linear attenuation model that exploits the benefits of using multiple measurements obtained from the surface of the material in which the contamination is buried using a radiation detector.

View Article and Find Full Text PDF

In this work, a robust stand-off alpha detection method using the secondary effects of alpha radiation has been sought. Alpha particles ionise the surrounding atmosphere as they travel. Fluorescence photons produced as a consequence of this can be used to detect the source of the alpha emissions.

View Article and Find Full Text PDF

Radioactive sources exist in environments or contexts that influence how they are detected and localised. For instance, the context of a moving source is different from a stationary source because of the effects of motion. The need to incorporate this contextual information in the radiation detection and localisation process has necessitated the integration of radiological and contextual sensors.

View Article and Find Full Text PDF

Purpose: Having been overlooked for many years, research is now starting to take into account the directional distribution of neutron workplace fields. Existing neutron dosimetry instrumentation does not account for this directional distribution, resulting in conservative estimates of dose in neutron workplace fields (by around a factor of 2, although this is heavily dependent on the type of field). This conservatism could influence epidemiological studies on the health effects of radiation exposure.

View Article and Find Full Text PDF